Объяснение:
1) Kl=12; KM:ML= 3 : 1
KM=3ML
KM+ML=KL
3ML+ML=12
4ML=12
ML=3
KM=3ML=9
2) AB/ED=YX/LK; AB= 2 см, ED= 3 см и LK= 27 см
YX=LK·AB/ED=27·2/3=54/3=18
YX=18 см
3) ΔKBC∼ΔRTG; k= 18; P₁=8; S₁=9; P₂=?, S₂=?
Условие не полное. Не определена зависимость сторон от коэффициента подобия к. То есть какие стороны подобны(это не обязательно), а главное порядок отношения сторон относительно к.
Рассмотрю оба случая:
a) ΔKBC∼ΔRTG⇒P₂/P₁=k; S₂/S₁=k²
P₂=kP₁=8·18=144 см
S₂=k²S₁=8²·9=64·9=576 см²
б) ΔKBC∼ΔRTG⇒P₁/P₂=k; S₁/S₂=k²
P₂=P₁/=18/8=2,25 см
S₂=S₁/k²=9/8²=9/64 см²
Объяснение:
2) sinx, cosx=-4\5
По основному тригонометрическому тождеству:
sin^2x+cos^2x=1
sin^2x=1-cos^2x
sin^2x=25\25-16\25
sin^2x=9\25
sinx=3\5 (знак "+" потому, что синус в 1 и 2 четверти принимает положительные значения)
3) log2(16)*log6(36)=4*2=8
5) (1\6)^6-2x=36
(1\6)^6-2x=(1\6)^-2
Поскольку основания одинаковые, приравняем степени:
6-2x=-2
-2x=-8 | :(-2)
x=4
6) sinx=√2\2
x=(-1)^n*π\4+πn, n - целое
8) log√3(x)+log9(x)=10
2log3(x)+1\2log3(x)=10
2.5log3(x)=10 | :2.5
log3(x)=4
x=3^4
x=81
4) Вынесем 81 из-под корня:
(9√7√b)/14√b
Вынесем корень 7 степени из-под квадратного корня:
9*(14√b)\14√b
Сократим корень 14 степени из b, поскольку по условию b>0, значит знаменатель не может быть 0
9
1) y=f(x)
Наибольшее значение функции - наивысшая точка по оси Y, значит 7