1) y^2=3x+5 x y целые 1)Предположим что целые решения существуют. Пусть y при делении на 3. дает остаток i (|i|<=3 тк остаток не превышает модуля делителя. (3*n+i)^2=3x+5 9*n^2+6*n*i+i^2=3x+5 9*n^2+6*n*i-3x=5-i^2 откуда число 5-i^2 должно делится на 3 возможно i=+-1;+-2;+-3 5-i^2=4 , 1 , -4 то есть не может делится на 3. А значит мы пришли к противоречию целых решений нет. 2)Положим что существуют. x^2-y^2=1998 (x-y)(x+y)=1998 тогда x-y и x+y тоже целые числа 1998 не делится на 4. А значит оба числа x-y и x+y не могут быть четными. Раз 1998 четное. То один из множителей четный другой нет. То сумма чисел x-y и x+y число не четное но x-y+x+y=2y -четное то мы пришли к противоречию. Целых решений нет.
1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
У тебя 5y сокращается, и в итоге x=-1