Пусть х руб. - цена детского билета, у руб. - цена взрослого билета. Составим систему уравнений по условию задачи:
{2х + у = 315
{3х + 2у = 565
- - - - - - - - - - - -
Вычтем из второго уравнения первое:
(3х - 2х) + (2у - у) = 565 - 315
х + у = 250
у = 250 - х
- - - - - - - - - - - -
Подставим значение у в любое уравнение системы
2х + 250 - х = 315 3х + 2 · (250 - х) = 565
2х - х = 315 - 250 3х + 500 - 2х = 565
х = 65 3х - 2х = 565 - 500
х = 65
- - - - - - - - - - - -
у = 250 - 65
у = 185
ответ: детский билет стоит 65 рублей,
а взрослый билет стоит 185 рублей.
Проверка:
2 · 65 + 1 · 185 = 130 + 185 = 315 руб. - заплатила первая семья
3 · 65 + 2 · 185 = 195 + 370 = 565 руб. - заплатила вторая семья
Объяснение:
1.Найдите координаты вектора f, равного разности векторов d(-8;5) и e(5;-2).
d -e={-8-5;5-(-2)}={-13;7}
2.Найдите координаты вектора t, равного сумме векторов s(-8;5) и c(5;-2).
s(-8;5) и c(5;-2) t= {-8+5;5+(-2)}={-3;3}
3. Найдите координаты середины отрезка BD,
если B(-8;5), D(4;1). М( (-8+4)/2 ; (5+1)/2) М( (-2 ; 3)
4. Найдите длину отрезка AB, если A(-2;7), B(-1;-3)
!АВ!= √(-1+2)²+(3-7)²=√17
5. Найдите длину вектора m, равного n+p , если n (6;-2), p (-7;-2).
n→ {6;-2}+p→{-7;-2} = {6+(-7);-2+(-2}= {-1;-4}
6. Найдите координаты вектора -5a , если a(-0,2;4) = {-1;-4}.
-5a ={-0,2*5;4*5} = {-1;20}
x=0
Объяснение:
так как 0 умноженное на любое число равно 0