М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
КИРИЛЛ9067
КИРИЛЛ9067
23.09.2020 09:56 •  Алгебра

Нужно в стандартном виде одночлена это.


Нужно в стандартном виде одночлена это.

👇
Открыть все ответы
Ответ:
Makaezhik02
Makaezhik02
23.09.2020
Хорошо, давайте построим график функции y = x^2 и определим значение y при x = -2 и x = 5.

Шаг 1: Создайте таблицу значений для функции y = x^2. Мы будем использовать значения x от -5 до 5.

x | y
--------------
-5 | 25
-4 | 16
-3 | 9
-2 | 4
-1 | 1
0 | 0
1 | 1
2 | 4
3 | 9
4 | 16
5 | 25

Шаг 2: Постройте график, используя эти значения. На горизонтальной оси (ось x) поставьте значения от -5 до 5, а на вертикальной оси (ось y) поставьте значения от 0 до 25. Затем отметьте точки, соответствующие значениям из таблицы. Соедините эти точки плавной кривой линией. Результат будет выглядеть как парабола, открывающаяся вверх.

| 25
|
|
|
|_____ *
| *
| *
|*
|
-5 -4 -3 -2 -1 0 1 2 3 4 5

Шаг 3: Теперь найдем значение y при x = -2 и x = 5. Мы видим, что при x = -2 график пересекает ось y на значении y = 4, а при x = 5 график пересекает ось y на значении y = 25. Таким образом, ответ на ваш вопрос - значение y при x = -2 равно 4, а значение y при x = 5 равно 25.

Надеюсь, что этот ответ будет понятен для вас! Если у вас есть еще вопросы, пожалуйста, не стесняйтесь задавать!
4,5(58 оценок)
Ответ:
Aye03
Aye03
23.09.2020
Для решения данной задачи нам необходимо выяснить, является ли число B = 243 членом последовательности (yn) с уравнением yn = (3–√3)7n−6.

Для этого подставим значение B = 243 в уравнение и решим его:

yn = (3–√3)7n−6

Подставляем B = 243:

243 = (3–√3)7n−6

Теперь мы должны избавиться от знака корня в правой части уравнения. Для этого возведем в квадрат обе части уравнения:

(243)² = ((3–√3)7n−6)²

59049 = (3–√3)²(7n−6)²

Раскроем скобки и упростим выражение:

59049 = (9 – 6√3 + 3)(49n² – 84n + 36)

59049 = (12 – 6√3)(49n² – 84n + 36)

59049 = 588n² – 1008n + 432 – 294√3n + 504√3 – 216√3

59049 = 588n² – 1008n + 432 – (294 – 504 + 216)√3n + 504√3

59049 = 588n² – 1008n + 432 + (426 - 216)√3n + 504√3

59049 = 588n² – 1008n + 432 + 210√3n + 504√3

59049 = (588n² + 210√3n) – (1008n + 504√3) + (432 + 504√3)

Теперь мы можем записать это выражение в виде:

59049 = (588n² + 210√3n) – (1008n + 504√3) + (432 + 504√3)

59049 = A – B + C

где A = 588n² + 210√3n, B = 1008n + 504√3, C = 432 + 504√3.

Сравнивая последнее выражение с исходным, мы видим, что A = yn, B = 243 и C = 0. Таким образом, мы получаем:

yn = 243

Это означает, что число B = 243 является членом последовательности (yn).

Теперь мы должны найти номер соответствующего члена последовательности. Для этого приравняем yn к B и решим уравнение:

yn = 243

588n² + 210√3n = 243

К сожалению, данный уравнение решить аналитически сложно из-за присутствия иррациональных чисел. Однако, мы можем воспользоваться графическим методом или численными методами для приближенного нахождения корней этого уравнения.

Номером члена последовательности будет значение n, которое является приближенным решением уравнения.
4,6(32 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра

MOGZ ответил

Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ