3sin²x+5sinxcosx+2cos²x=0 разделим на sin²x не равное 0
3+5ctgx+2ctg²x=0
ctgx=y
3+5y+2y²=0
по теореме Виета корни у=-1,5 и -1, тогда ctgx=-1,5 или ctgx=-1
х=arcctg(-1,5), х=arcctg(-1)
x=arcctg(-1,5)+Пік kЄZ, х=arcctg(-1)=Пі-arcctg1=Пі-Пі/4=3Піt/4 tЄZ
если sin²x=0, то корни х=2Пі n, n - целое
на {-3π;-2π} -2π, -3π, -9π/4 Так?
2 см и 2 см
Объяснение:
Дан прямоугольник, периметр которого равен 8 см. Тогда сумма двух сторон равна 8:2 = 4 см. Обозначим через x одну сторону прямоугольника. Тогда вторая сторона равна: 4–x. Теперь составим функцию площади прямоугольника: y=x·(4–x)=4·x-x². Дифференцируем функцию
y'=(4·x–x²)'=4–2·x.
Находим критические точки функции:
y'=0 ⇔ 4–2·x=0 ⇔ x=2 – критическая точка.
Проверим знаки производной:
при x<2: y'=4–2·x>0 и при x>2: y'=4–2·x<0.
Значит, x=2 точка максимума. Тогда
yмакс=y(2)=4·2–2²=8–4=4 см²,
а стороны x=2 см и 4–2=2 см.
Посчитаем сначала количество чисел, записываемых цифрами от до
, а затем из этого числа вычтем те, среди которых есть четыре идущих подряд. Сразу заметим, что если в таком числе есть четыре подряд идущих числа, то и в самом числе они должны идти подряд.
Выпишем числа от до
:
. Любые
вычеркнутых цифры оставят число, в котором цифры идут по возрастанию. Наоборот, любое такое число может быть получено описанной операцией. Число вычеркнуть:
.
Теперь посчитаем количество тех, в которых есть четыре подряд идущих. В этом случае мы можем вычеркивать только из -ех оставшихся чисел. Поскольку четверок подряд идущих
, то всего искомых чисел
.
Итого .
..................................................