2 белых, 3 красных, 6 чёрных шаров - всего в сумме 11 шаров
Пусть событиеА - вынут белый шар, событие В - красный шар. Интересующее нас событие С - вынуты 1 белый и 1 красный шар.
Число всех возможных случаев при выборке 2-х шаров из 11 равно числу сочетаний из 11 элементов по 2:
n=C211= 11!/(11-2)!2! = 11!/9!*2! =
= 1*2*3*4*5*6*7*8*9*10*11 / 1*2*3*4*5*6*7*8*9*2 = 10*11 / 2 = 110/2 = 55
Число случаев, благоприятствующих событию А равно
C12 =2!/1 = 2
Число случаев, благоприятствующих событию В равно
C13 =3!/2!*1 = 3
вероятность вынуть 1 белый и 1 красный шар равна
C12 * C13 / C211 = 2*3 / 55 = 6/55
ОТВЕТ: 6/55.
заметим, что
I t I² =t², ⇒ (4*x-7)^2= Ι (4*x-7) Ι² ⇒ пусть Ι (4*x-7) Ι=y ⇔
y²=y ⇔y(y-1)=0 ⇔ 1) y=0 2) y-1=0 ⇒ y=1 ⇒ Ι (4*x-7) Ι=1
1) y=0 ⇒ Ι (4*x-7) Ι=0 ⇒4*x-7=0 ⇒x=7/4
проверка x=7/4
(4*x-7)^2 = Ι (4*x-7) Ι (4*(7/4)-7)^2 = Ι (4*(7/4)-7) Ι 0=0 верно
2) Ι (4*x-7) Ι=1 ⇔
2.1) 4*x-7=1 ⇔ x=2
проверка x=2 (4*2-7)^2 = Ι (4*2-7) Ι 1=1 верно
2.2) 4*x-7=-1 ⇔ x=6/4 x=3/2
проверка x=3/2 (4*(3/2)-7)^2 = Ι (4*(3/2)-7) Ι 1=1 верно
ответ: x=7/4, x=2, x=3/2 .
2.
Ι (3x^2-3x-5) Ι=10 ⇔
1) (3x^2-3x-5) =10 2) (3x^2-3x-5) =-10
1) (3x^2-3x-15) =0 D=9+4·3·15=9(1+20)>0
x1=(3-3√21)/6 =(1-√21)/2 x2=(1+√21)/2
2) (3x^2-3x+5) =0 D=9-4·3·5=<0 нет решений
ответ:
x1=(1-√21)/2 x2=(1+√21)/2