A) 5х + 2х = 0; 3х - 6х = 0.
22 b) 2х - 4 = 0; 5х
+ 3 = 0. c) 12х2 = 0; -5х2 = 0.
ІІ топ
22
a) х +2х=0; 3х -5х=0.
22 b) 3х - 27 = 0; 2х
c) -2х2 = 0; 8х2
ІІІ топ
+ 5 = 0. = 0.
22
a) 3х + 9х = 0; х - 7х = 0.
22
a) 2х - 8= 0; х + 15 = 0.
d) 6х2 = 0; 3х2 = 0.
log₂ sin(x/2) < - 1
ОДЗ: sinx/2 > 0
2πn < x/2 < π + 2πn, n ∈ Z
4πn < x < 2π + 4πn, n ∈ Z
sin(x/2) < 2⁻¹
sin(x/2) < 1/2
- π - arcsin(1/2) + 2πn < x/2 < arcsin(1/2) + 2πn, n ∈ Z
- π - π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/3 + 4πn < x < π/3 + 4πn, n ∈ Z
2) log₁/₂ cos2x > 1
ОДЗ:
cos2x > 0
- arccos0 + 2πn < 2x < arccos0 + 2πn, n ∈ Z
- π/2 + 2πn < 2x < π/2 + 2πn, n ∈ Z
- π + 4πn < x < π + 4πn, n ∈ Z
так как 0 < 1/2 < 1, то
cos2x < 1/2
arccos(1/2) + 2πn < 2x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < 2x < 2π - π/3 + 2πn, n ∈ Z
π/6 + πn < x < 5π/6 + πn, n ∈ Z