Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная
15 см и 27 см
Объяснение:
Пусть х - длина меньшей стороны прямоугольника, тогда (х+12) см - длина большей стороны.
Чтобы найти площадь прямоугольника, необходимо перемножить длины его сторон:
х · (х + 12) = 405.
Раскрываем скобки и находим х (длину меньшей стороны):
х² + 12х - 405 = 0 .
Согласно теореме Виета:
х₁,₂ = - 6 ± √(36 + 405) = - 6 ± √441 = - 6 ± 21.
х₁ = - 6 + 21 = 15 см
х₂ = - 6 - 21 = - 27 - не может быть решением, так как стороны прямоугольника могут быть только положительными числами.
Зная длину меньшей стороны, находим длину большей стороны:
х + 12 = 15 + 12 = 27 см.
Полученные значения являются правильными, так как их произведение равно 405, что соответствует условию задачи:
15 · 27 = 405
ответ: 15 см и 27 см
ответ///////////////////