Весь путь S время в пути пешехода (t), время в пути велосипедиста (t-2) путь до места встречи (S1), вторая часть пути (S2) S = S1 + S2 скорости велосипедиста и пешехода (vv) и (vp) S1 = vv * (4/3) S2 = vp * (4/3) S = (4/3) * (vv + vp) S = t * vp S = (t-2) * vv система (4/3) * (vv + vp) = t * vp t * vp = (t-2) * vv
4*vv = 3 * t * vp - 4*vp 4 * t * vp / (t-2) = (3*t - 4) * vp 4*t = (3*t - 4) * (t-2) 4*t = 3*t*t - 10*t + 8 3*t*t - 14*t + 8 = 0 D = 14*14 - 4*3*8 = 4*(49-24) = 10*10 t(1;2) = (14 +-10) / 6 = (7 +- 5) / 3 t = 4 t = 2/3 часа -- 40 минут - это меньше, чем 1 час 20 минут))) не является решением ответ: 4 часа шел пешеход, 2 часа ехал велосипедист.
Task/26525850 -------------------- Решите через систему √2x-x² +1 ≥ 2x - 3 . --------------- √( 2x- x² +1) ≥ 2x - 3 . ОДЗ данного неравенства: 2x - x² +1 ≥ 0 ⇔ x² - 2x - 1 ≤ 0 ⇔ x ∈ [ 1 - √2 ; 1 + √2 ] . Будем рассматривать только эти x, другие x не могут являться решениями данного неравенства. 1. Если 2x - 3 < 0 ,то есть x < 1,5 , то все такие x из ОДЗ , удовлетворяющие этому условию, являются решениями неравенства. Значит, все x ∈ [ 1 -√2 ; 1,5 ) − решения неравенства . 2. Если 2x-3 ≥ 0 , то есть x ≥ 1,5 ,а с учетом ОДЗ это означает, что 1,5≤ x ≤ 1 + √2 , иначе x ∈ [ 1,5 ; 1+√2] ,то обе части неравенства неотрицательны. Возведём обе части неравенства в квадрат: 2x- x² +1 ≥ ( 2x - 3 )² ; 2x- x² +1 ≥ 4x² - 12x +9 ; 5x² -14x +8 ≤ 0 ; Уравнение 5x² -14x +8 =0 имеет корни x₁ =(7-3)/5 =4/5 и x₂=(7+3)/5=2 Значит, решением неравенства являются x∈ [ 0,8 ; 2]. С учётом x ∈ [ 1,5 ; 1+√2] получается, что на данном множестве решениями являются x ∈ [ 1,5 ; 2] . Объединяя результаты пунктов 1 и 2, получаем x ∈ [ 1 -√2 ; 1,5 ) ∪ [ 1,5 ; 2] , т.е. x ∈ [ 1 -√2 ; 2] .
ответ : x ∈ [ 1 -√2 ; 2] . * * * * * * * * * * * * P.S. * * * * * * * * * * * * Это решение можно записать другим ⇔ совокупности двух систем неравенств [ { 2x - 3 < 0 ; 2x - x² +1 ≥ 0 . [ { х <1,5 ; 1 -√2 ≤ x ≤ 1+ √2 . [ { 2x - 3 ≥ 0 ; 2x - x² + 1 ≥ (2x - 3)² . ⇔ [{ x ≥1,5 ; x∈ [ 0,8 ; 2] . ⇔ --- [ x ∈ [1 -√2 ;1,5 ) [ x ∈ [ 1,5 ; 2] . ⇔ x ∈ [1 -√2 ;2 ] . см еще и приложения
.........................