Уравнение четвёртой степени имеет вид: Разделим обе части на коэффициент , получаем где a, b, c, d – произвольные вещественные числа.
Уравнения вида приводится уравнение четвёртой степени, у которых отсувствует третьей степени., поэтому нужно сделать замену переменных, тоесть , где - коэффициент перед х^3 и 4 - произвольные вещественные числа
В нашем случае такое уравнение: Заменим , получаем
Получаем кубическое уравнение: В нашем случае: Подставляем и получаем уравнение Разложим одночлены в сумму нескольких Выносим общий множитель Уравнение 16s²+288s+3343=0 решений не имеет, так как D<0
Таким образом для решения уравнения остается квадратное уравнение Заменяем
Б - заменить на значек бесконечности (восьмерка горизонтально).
А) D(f)=(-Б;+Б). Прямая. В точке (0;0) пересекает ось абсцисс (х) и ось ординат (у). Возрастает т.к. k > 0. Не имеет ограничений. Не четная. Область значений - E(f)=(-Б;+Б).
Б) D(f)=(-Б;+Б). Прямая. В точке (0;3) пересекает ось х. В точке (-1.5;0) пересек. ось у. Возрастает т.к. k > 0. Не имеет ограничений. Не четная. Область значений - E(f)=(-Б;+Б).
В) D(f)=(-Б;+Б). Прямая. В точке (0;1) пересекает ось х. В точке (-0.2;0) пересек. ось у. Убывает т.к. k < 0. Не имеет ограничений. Не четная. Область значений - E(f)=(-Б;+Б).
Г) D(f)=(-Б;+Б). Прямая. В точке (0;-2) пересек. ось у. Убывает т.к. k < 0. Ни четная и ни не четная. Область значений - E(f)=-2
Разделим обе части на коэффициент
где a, b, c, d – произвольные вещественные числа.
Уравнения вида приводится уравнение четвёртой степени, у которых отсувствует третьей степени., поэтому нужно сделать замену переменных, тоесть
В нашем случае такое уравнение:
Заменим
Получаем кубическое уравнение:
В нашем случае:
Подставляем и получаем уравнение
Разложим одночлены в сумму нескольких
Выносим общий множитель
Уравнение 16s²+288s+3343=0 решений не имеет, так как D<0
Таким образом для решения уравнения остается квадратное уравнение
Заменяем
Возвращаемся к замене
Окончательный ответ: