М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kiiss
Kiiss
09.01.2023 01:09 •  Алгебра

Решите уравнение
х^2 + 5х + 4 = 0
х1=
х2=

👇
Ответ:
Vika15678
Vika15678
09.01.2023

X1=-1

X2=-4

Объяснение:

4,6(50 оценок)
Открыть все ответы
Ответ:
xokkey1
xokkey1
09.01.2023

Два последних по списку выражения.

Объяснение:

1. (-1) в (-4) степени: отрицательное основание (-1) в четной степени будет положительным, а 1 в любой степени равен 1, так что 1

(-1) в (-3) степени: отрицательное основание (-1) в нечетной степени будет отрицательным, а 1 в любой степени равен 1, так что -1.

1 - (-1) = 1+1 = 2.

2. (-1) в 6 степени: -1 в четной степени будет просто 1, поскольку степень четная.

(-1) в 8 степени: то же самое, 1.

1+1=2.

3. (-1) в (-6) степени: отрицательное основание в четной степени положительно, значит просто 1.

(-1) в 8: было, 1.

1+1=2.

4. (-1) в 7: отрицательное основание в нечетной степени отрицательно, то есть -1.

1 в 7 степени: тут думаю все понятно, просто единица и просто в 7 степени, 1.

-1+1=0

5. (-1) в 4 степени: было подобное, 1.

(-1) в 9 степени: подобное тоже было, -1.

1+(-1)= 1-1 = 0.

4,7(50 оценок)
Ответ:
Inalova77
Inalova77
09.01.2023

Согласно определению периодической функции, функция f (x) является периодической, а число Т ≠ 0 ее периодом, если для любых значений переменной х выполняется равенство f(x) = f(x + Т).

1) f(x) = sin x/4,T = 8π.

Используя тот факт, что функция sin x является периодической с периодом 2π, получаем:

sin ((x + 8π)/4) = sin (x/4 + 8π/4) = sin (x/4 + 2π) = sin (x/4).

Следовательно, функция f(x)=sin x/4 является периодической с периодом 8π.

2) f (x) = 3cos2x, T = π.

Используя тот факт, что функция cos x является периодической с периодом 2π, получаем:

3cos(2 * (x + π)) = 3cos(2 * x + 2 * π) = 3cos(2 * x) = 3cos2х.

Следовательно, функция f (x) = 3cos2x является периодической с периодом π.

3) f(x) = tg3x, T= π/3.

Используя тот факт, что функция tg x является периодической с периодом π, получаем:

tg(3 * (x + π/3)) = tg(3 * x + 3π/3) = tg(3x + π) = tg3x.

Следовательно, функция f (x) = tg3x является периодической с периодом π/3.

4) f(x) = ctg x/4, T = 4π.

Используя тот факт, что функция сtg x является периодической с периодом π, получаем:

сtg((х + 4π)/4) = ctg(x/4+ 4π/4) = ctg(x/4 + π) = ctgx/4.

Следовательно, функция f (x) = ctg x/4 является периодической с периодом 4π.

:3

4,7(57 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ