Тільки по графіку можна одразу вказати, при яких значеннях аргументу значення функції додатні
Приклад: Використовуючи графік функції у = х2 – 1, де -3 ≤ х ≤ 2, знайти значення аргументу, при яких функція набуває додатних значень;
Для значень х таких, що -3 < х < -1, точки графіка розташовані вище осі абсцис. Тому функція набуває додатних значень при -3 < х < -1. Так само вище осі абсцис знаходяться точки графіка для 1 < х < 2. Тому при 1 < х < 2 функція знову набуває додатних значень. Отже, при -3 < х < -1 або 1 < х < 2 функція набуває додатних значень.
Первый поезд проехал весь путь : S= Vt Тогда второй поезд: S= 0.75V (t + 2.25) т.к. 2 ч. 15 мин = 2 15/60 ч. = 2,25 ч. 100% - 25% = 75% = 75/100=0,75 Расстояние, которое поезда одинаковое.⇒ Vt = 0.75V(t+2.25) Vt = 0.75Vt + 1.6875V Vt - 0.75 Vt = 1.6875V 0.25Vt = 1.6875V t= 1.6875V / 0.25V t= 6.75 часа - время в пути первого поезда 6.75 +2.25 = 9 часов - время в пути второго второго поезда 7 ч. 00 мин. + 9 ч. = 16 ч. 00 мин. - второй поезд прибыл в Краснодар.
ответ: в 16 часов второй поезд прибыл в Краснодар.
Тільки по графіку можна одразу вказати, при яких значеннях аргументу значення функції додатні
Приклад: Використовуючи графік функції у = х2 – 1, де -3 ≤ х ≤ 2, знайти значення аргументу, при яких функція набуває додатних значень;
Для значень х таких, що -3 < х < -1, точки графіка розташовані вище осі абсцис. Тому функція набуває додатних значень при -3 < х < -1. Так само вище осі абсцис знаходяться точки графіка для 1 < х < 2. Тому при 1 < х < 2 функція знову набуває додатних значень. Отже, при -3 < х < -1 або 1 < х < 2 функція набуває додатних значень.