Поскольку парабола и прямая имеют общую точку пересечения, то приравняю эти два равенства:
6x+b = x² + 8
x²-6x+8-b=0
Поскольку прямая должна касаться параболы,(то есть они имеют ровно одну общую точку), то данное квадратное уравнение должно иметь один корень(одну абсциссу точки касания, так как точка у нас одна). А такое возможно лишь при условии, что дискриминант данного уравения равен 0. Выделим сначала дискриминант из данного квадратного уравнения:
a = 1;b = -6;c = 8-b
D = b²-4ac = 36 - 4(8-b) = 36 - 32 + 4b = 4 + 4b.
D = 0
4+4b = 0
4b = -4
b = -1
Значит, при b = -1 прямая касается параболы.
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.