Радиус, проведенный в точку касания, перпендикулярен касательной. ⇒
∆ МОК - прямоугольный.
Отношение катетов 10:24=5:12 указывает на то, что длины сторон треугольника из Пифагоровых троек 5:12:13, в которых эти длины –целые числа.⇒ МО=2•13=26. И это можно проверить по т.Пифагора.
МО=√(KO²+KM²)=√676=26
В прямоугольном треугольнике каждый катет является высотой, проведенной к другому катету.
Площадь прямоугольного треугольника равна половине произведения катетов:
Как решать, как решать... для начала подумать надо. Попробуй сначала записать это число, а потом составить неравенство, а там и видно будет. Чтобы число было трёхзначным и кратным девяти надо найди максимальное двузначное число, кратное 9 и прибавить к нему девятку. Получим 99+9=108; Следующее число будет 99+9*2, следующее 99+9*3 и так далее. То есть общий вид таких чисел будет 99+9*n, где n>=1. Теперь определимся с верхней границей. Максимальное трёхзначное, кратное 9 это очевидно 999, представим его в нашей форме как 99+100*9. Значит верхняя граница n=100; То есть требуется найти сумму чисел 99+n*9, где n от 1 до 100. Получим 99*100+9*(1+2+3+..+100); Сумма чисел от 1 до 100 находится элементарно, это 5050. Таким образом наш результат 99*100+9*5050=55350. Вроде так как-то. С семёркой всё точно так-же.
Обозначим центр окружности О, точку касания К.
Радиус, проведенный в точку касания, перпендикулярен касательной. ⇒
∆ МОК - прямоугольный.
Отношение катетов 10:24=5:12 указывает на то, что длины сторон треугольника из Пифагоровых троек 5:12:13, в которых эти длины –целые числа.⇒ МО=2•13=26. И это можно проверить по т.Пифагора.
МО=√(KO²+KM²)=√676=26
В прямоугольном треугольнике каждый катет является высотой, проведенной к другому катету.
Площадь прямоугольного треугольника равна половине произведения катетов:
S=КМ•КО:2=24•10:2=120 см²