найдём точку пересечения прямых
4y=3x ⇒ 12y=9x ⇒ 5x+12y=5x+9x=14x ⇒ 14x=10 ⇒ x = 5/7 ⇒ 4y=3·5/7=15/7 ⇒ y=15/28
найдём векторы нормали
-3x+4y=0 ⇒ n₁(-3;4)
5x+12y-10=0 ⇒ n₂(5;12)
Проверим, острый ли угол между n₁ и n₂ (равносильно n₁·n₂ > 0)
n₁·n₂=-3·5+4·12=-15+48 > 0
Находим единичные вектора нормали
n₁'=n₁/|n₁|=(-3;4)/√(3²+4²)=(-3/5;4/5)
n₂'=n₂/|n₂|=(5;12)/√(5²+12²)=(5/13;12/13)
Находим вектор нормали к биссектрисе острого угла между прямыми
n₃=n₁'+n₂'=(-14/65;112/65)
Другим вектором нормали будет n₃'=65/14 n₃=(-1;8)
Составляем уравнение биссектрисы по точке (5/7;15/28) и вектору нормали n₃
n₃'·(x,y)=n₃'·(5/7;15/28) ⇒ -x + 8y = -5/7 + 8 ·15/28 = 25 / 7, или
-7x + 56y = 25
другой возможный вариант решения, использовать тот факт, что любая точка биссектрисы равноудалена от двух данных прямых, и формулу расстояния от точки до прямой
|4y-3x|/√(4²+3²) = |5x+12y-10|/√(5²+12²)
13|4y-3x| = 5|5x+12y-10|
13(4y-3x) = ±5(5x+12y-10)
Один вариант знака даёт биссектрису острого угла, второй — биссектрису тупого угла, потом останется только разобраться, какой вариант к какой биссектрисе относится.
Обозначим скорость катера -- х км\ч, скорость течения реки---у км\ч. По течению реки скорость катера будет ( х+у) , против течения ---(х-у) , а в стоячей воде-х. Составим систему согласно условия:
{4(x+y)+3x=148 {5(x-y)-2x=50
{7x+4y=148 {3x-5y=50
Решим систему сложения. Первое уравнение системы умножим на 5, а второе -- на 4 .
35x+20y=740 + {12x-20y=200
47x=940
x=20 скорость катера
Подставим значение х в любое уравнение системы и найдём у:( например , в первое)
7·20+4у=148
140+4у=148
4у=148-140
4у=8
у=2 скорость течения реки
ответ: 20 км\ч ; 2 км\ч
ответ:многочлен,противоположный данному многочлену равен нулю
Объяснение: