Ясно, что двигаясь вниз и вправо, независимо от формы пути, Фоксу нужно будет сделать 6 ходов, чтобы из левой верхней клетки попасть в правую нижнюю. Из этих шести ходов 3 обязательно будут ходами на одну клетку вниз, а 3 - ходами на одну клетку вправо. Поскольку после каждого ходачисло под фишкой меняется, то имеем перестановку из 6 элементов двух разных типов, по три каждого типа. Чтобы подсчитать общее количество вариантов достижения правой нижней клетки применяем формулу для числа перестановок n элементов с повторениями: P = n! / (n1! n2!), где n=6; n1=3 и n2=3. Подставляя, получаем P=6! / (3! 3!)=720/36=20 ответ:20
Чертим трапецию АВСД проводи одну диагональ ВД получается 2 равнобедренных треугольника АДВ и ВСД пусть α угол при основании треугольника который примыкает к верхнему основанию ∠СВД β ∠ВАД тогда из условий трап получаем ∠ВАД+∠АВС=180° β+(β+α)=α+2β=180° из треуг ВСД ∠ВСД=180°-2α=∠АВС=α+β решим систему уравнений α+2β=180° α=180°-2β α=180°-2β α=180°-2β α=180°-144° 180°-2α=α+β 3α+β=180° 3*180°-6β+β=180° 5β=360° β=72° α=36° α+β=36°+72°=108° тогда углы трапеции равны 72°, 108°, 108°, 72°
P = n! / (n1! n2!), где n=6; n1=3 и n2=3.
Подставляя, получаем
P=6! / (3! 3!)=720/36=20
ответ:20