ответ:иррациональное
Объяснение:
Пусть √28 + 10√3 рациональное
√28 + 10√3=√4*7+10√3=2√7+10√3=2(√7+5√3)-рациональное
2 рациональное, значит √7+5√3 рациональное.
возведем в квадрат (√7+5√3)^2=7+2*5√3*7+25*3=7+10*√21+75=82+10*√21
√7+5√3 рациональное значит, √7+5√3 в квадрате тоже рациональное.
Значит 82+10*√21 рациональное, 82 рациональное => 10*√21, тоже рациональное.
10 рациональное значит √21 рациональное ПРОТИВОРЕЧИЕ
значит√28 + 10√3 иррациональное
(если что мы предполагали что √28 + 10√3 рациональное)
1) a) 4+12x+9x2
4+12x+18
22+12x
2(11+6x)
б) 25-40х+16х2
25-40х+32
57-40х
г) -56а+49а*2+16
-56а+98а+16
42а+16
2(21а+8)
2) a) (y-1)(y+1) б) p^2-9 г) (3x-2)(3x+2) д) (3x)^2-2^2 е) a^2-3^2
y^2-1 (3x)^2-2^2 9x^2-4 a^2-9
в) 4^2-(5y^2) 9x^2-4
16-25y^2
4) a) a3-b3 б) 27a3+8b3
3(a-b) 81a+24b
3(27a+8b)
Cos110+cos105+cos100 = (cos110+cos100) + cos105=2cos (110-100) / 2cos (110+100) / 2+cos105=2cos5cos105+cos105=cos105 (2cos5+1)