Очевидно, что проигрывать команде нельзя. Обе ничьи её тоже не устроят. Что остаётся? 1) Победить оба раза. 2) Победить только один раз, а вторую игру свести к ничьей. Вероятность победы равна 0,4. Вероятность победить оба раза равна 0,4 · 0,4 = 0,16. Вероятность ничьей равна 1 - 0,4 - 0,4 = 0,2. Чему же равна вероятность один раз сыграть вничью и один раз победить? 0,4 · 0,2? Нет, она равна 0,4 · 0,2 + 0,2 · 0,4. Дело в том, что можно победить в первой игре, а можно и во второй, это важно. Считаем теперь вероятность выйти в следующий круг: 0,16 + 0,08 + 0,08 = 0,32.
В решении.
Объяснение:
с -3 -2 -1
2с +3 2*(-3)+3= -3 2*(-2)+3= -1 2*(-1)+3 = 1
2(с+3) 2*(-3+3)=0 2*(-2+3)=2 2*(-1+3)=4
(2с)²-3 (2*-3)²-3=33 (2*-2)²-3=13 (2*-1)²-3=1
2(с²-3) 2*((-3)²-3)=12 2*((-2)²-3)=2 2*((-1)²-3)= -4
с 0 1 2 3
2с+3 0+3=3 2*1+3=5 2*2+3=7 2*3+3=9
2(с+3) 2*(0+3)=6 2*(1+3)=8 2*(2+3)=10 2*(3+3)=12
(2с)²-3 (2*0)²-3= -3 (2*1)²-3=1 (2*2)²-3=13 (2*3)²-3=33
2(с²-3) 2*(0²-3)= -6 2*(1²-3)= -4 2*(2²-3)=2 2*(3²-3)=12