Положительные числа a,b и c таковы, что a (в третьей степени)=b (в четвертой) и b(во второй)=c (в третьей). тогда а) а=с(во творой) б)а(во второй)=с(в третьей) в)а(вт второй)=с г)а(в третьей)=с(во второй) д)а=с
Я думаю так: сумма квадратов двух чисел - всегда неотрицательна. А когда сумма двух неотрицательных чисел равна нулю? А когда каждое из слагаемых равно нулю. 1)(x^2-1)^2=0 2)(x^2-6x-7)^2=0 Решим первое уравнение: (x^2-1)^2=0 Квадрат числа равен нулю, когда само число равно нулю, значит: x^2-1=0 (x-1)(x+1)=0 x=-1 U x=1 2)(x^2-6x-7)^2=0 x^2-6x-7=0 D=(-6)^2-4*1*(-7)=64 x1=(6-8)/2=-1 x2=(6+8)/2=7 Итак, мы получили три корня: -1; 1; 7. Необходима проверка. После проверки получаем, что уравнению удовлетворяет только х=-1
Итак , по условию нам нужно решить уравнение и выписать меньший из корней в ответ Перейдем непосредственно к решению: (-5x-3)(2x-1)=0 Перемножив получим: -10x^2+5x-6x+3=0 Выполним возможное упрощение и получим: -10x^2-x+3=0 D=b^2-4ac=1+120=121 x1=(-b+√D)/2a=(1+11)/-20=12/-20=-0,6 x2=(-b-√D)2a=(1-11)/-20=10/-20=-0,5 А вот теперь поломаем голову, -0.5 будет большим корнем , но к нулю будет он ближе , но -0.6 меньший корень , но к нулю он дальше , но именно -0.6 нам и нужно записать в ответ как меньший корень
ответ: А) а=с(во творой)
для удобства записи использую знак ^ - означает степень
1. что мы имеем?
а^3=b^4
b^2 = c^3
2. из второго равенства следует (т.к. все числа положительные), что если мы его возведем в квадрат - равенство не изменится
(b^2)^2 = (c^3)^2
(b^2)^2 = b^4 и из первого равенства мы знаем, что b^4 равно = a^3
3. т.е. a^3 = (c^3)^2 = c^ (3*2)= c^(2*3) = (c^2)^3
4. и т.к. опять-таки все числа положительные ,мы можем возвести обе части равенства в степень 1/3 (т.е. взять кубический корень) - получим равенство
a = c^2 - это и есть ответ А)