a) lim(x→∞) (3x⁶-x²+x)/(x⁶-2) Неопределённость ∞/∞.
Разделим одновременно числитель и знаментель на x⁶:
lim(x→∞) (3-(1/x⁴)+(1/x⁵))*(1-(2/x⁶))=(3-0+0)/(1-0)-3/1=3.
б) lim(x→1) (√(1+3x²)-2)/(x²-x) Неопределённость 0/0.
Возьмём одновременно производную от числителя и знаментеля:
lim(x→1) (√(1+3x²)-2)'/(x²-x)'=
=lim(x→1) 6*x/(2*√(1+3x)*(2x-1))=6/(2*2*1)=6/4=3/2.
в) lim(x→0) (sin(5*x)/(3*x) Неопределённость 0/0.
Возьмём одновременно производную от числителя и знаментеля: lim(x→0) (sin(5*x)'/(3*x)'=lim(x→0) 5*cos5x/3=5*1/3=5/3.
В первом отпадает корень -10 т.к. под корнем должны быть только полож. числа. в третьем не подходит 3 (-2=2). а вот второй
Объяснение:
Корень 4 степени из х^2 это все равно, что корень из х. получаем
sqrt(x)+12=x
пусть sqrt(x)=t. Тогда
t+12=t^2
-t^2 + t + 12 = 0
t^2 - t - 12 = 0
D = 1+48=49
t1 = (-1+7)/2 = 6
t2 = (-1-7)/2 = -4
Обратная замена:
1) t = 6, тогда sqrt(x)=6 (x=36)
2) t = -4, sqrt(x)=-4 (x=16)
При этом один из этих корней точно лишний, т.к изначально уравнение было 1 степени и имело лишь 1 корень. При подстановке вручную убеждаемся, что подходит х=16