24 минуты = 24/60 часа = 4/10 часа = 0,4 часа. Пусть х - намеченная скорость. Тогда х-10 - сниженная скорость. 4х - расстояние между городами. 2х - длина части пути, пройденная с намеченной скоростью. 4х-2х - длина части пути, пройденная со сниженной скоростью. (4х-2х)/(х-10)- время, затраченное на часть пути со сниженной скоростью. Уравнение: 2 + (4х-2х)/(х-10) = 4 + 0,4 2 + 2х/(х-10) = 4,4 2х/(х-10) = 4,4-2 2х/(х-10) = 2,4 2х = 2,4(х-10) 2х = 2,4х - 24 2,4х-2х = 24 0,4х = 24 х = 24:0,4 х = 60 км/ч - первоначальная скорость автомобиля. ответ: 60 км/ч.
Проверка: 1) 60•4=240 км - расстояние между городами. 2) 2•60 = 120 км - длина пути, пройденная с намеченной скоростью. 3) 60-10=50 км/ ч - сниженная скорость. 4) 2+0,4 = 2,4 часа время езды со сниженной скоростью. 5) 50•2,4 = 120 км - длина пути, пройденная со сниженной скоростью. 6) 120+120=240 км - длина всего пути.
Пусть х – число этажей, у – квартир, z –подъездов. х*y*z=231 Разложим число 231 на множители: 3*7*11=231 По условиям задачи количество квартир на каждом этаже больше 2, но меньше 7, т.е. 2> у <7 Отсюда видно, что число квартир равное 7 или 11 не подходит, т.к. не будет выполняться неравенство. Неравенство выполняется, если количество квартир на этаже равно 3: 2> 3 <7 (Значит 7 и 11 квартир быть не может). Количество квартир у =3
Пусть число этажей z=7 (11 подъездов), тогда количество квартир в подъезде составляет 3*7=21 первый подъезд имеет счет квартир: с 1 по 21 второй подъезд: с 22 по 42 Не подходит, т.к. не выполняется условие задачи: во втором подъезде есть квартира номер которой больше 42. Если число этажей 7, а число квартир 3, тогда максимальный номер квартиры во втором подъезде 42.
Возьмем количество этажей равным z=11, тогда количество квартир в подъезде 11*3=33 1 подъезд: с 1 по 33 номер 2 подъезд: с 34 по 66 номер (больше 42). Выполнены все условия задачи. Значит, в доме 11 этажей, 7 подъездов и 3 квартиры на каждом этаже. ответ: 11 этажей.
3a^3b+1
Объяснение:
фотомач