1)Можно вынести общего множителя за скобки. Используем распределительный закон ac + bc = c(a + b)Например - 12 y ^3 – 20 y ^2 = 4 y ^2 · 3 y – 4 y ^2 · 5 = 4 y ^2 (3 y – 5). 2)Использовать формулу сокращенного умножения. x ^4 – 1 = ( x ^2 )^ 2 – 1 ^2 = ( x^ 2 – 1)( x^ 2 + 1) = ( x ^2 – 1 ^2 )( x ^2 + 1) = ( x + 1)( x – 1)( x 2 + 1). группировки x^3 – 3 x 2 y – 4 xy + 12 y ^2 = ( x ^3 – 3 x 2 y ) – (4 xy – 12 y ^2 ). В первой группе мы вынесли за скобку общий множитель x^2, а во второй − 4y . В результате получаем: ( x ^3 – 3 x 2 y ) – (4 xy – 12 y ^2 ) = x 62 ( x – 3 y ) – 4 y ( x – 3 y ). Теперь общий множитель ( x – 3 y ) можем вынести за скобки: x ^2 ( x – 3 y ) – 4 y ( x – 3 y ) = ( x – 3 y )( x^2 – 4 y ).
1-весь заказ 1/х - работа за час 1-й компании 1/(х+9) - работа за час второй компании 1/х+1/(х+9) = 1\20 - ПЕРЕНЕСЕМ 1\20 В ЛЕВУЮ ЧАСТЬ 1/х+1/(х+9) - 1\20 = 0 ПРИВЕДЕМ ВСЕ ОДНОЧЛЕНЫ К ОБЩЕМУ ЗНАМЕНАТЕЛЮ 1/х + 1/(х+9) - 1\20 / 20*х(х+9) = 0 домножим обе части на знаменатель,т.е. избавимся от него. Получим это уравнение 20х+180+20х-х²-9х = 0 -х²+31х+180= 0 D = 961+720 = 1681 (41) x1 = (-31+41):(-2) <0 - не подходит по смыслу. х2 = (-31-41):(-2) = 36 (часов надо 1 бригаде) 36+9 = 45 ответ за 45 часов выполнит работу 2 бригада.
5 sin 2x= 2 cos²2x+1,
5 sin 2x= 2 cos²2x+sin²2x+cos²2x,
5 sin 2x=3cos²2x+sin²2x,
5 sin 2x=3-3sin²2x+sin²2x,
2sin²2x+5sin2x-3=0,
(можешь sin2x обозн. за t и потом просто решать квадратное ур-е, но мне проще готовое писать)
sin2x=1/2 или =-3,
2x=(-1) (в степени n)*π/6+πn или |sin2x|≤1,
x=(-1) (в степени n)*π/12+(π/2)*n или корней нет.
конечный ответ: x=(-1) (в степени n)*π/12+(π/2)*n