Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
Sin= 1 cos= 0 Ну это табличные значения(фактически). Их нужно знать.
Теперь рассмотрим 2n. 2 означает, что будет сделан полный оборот, и точка вернётся в тоже место, в котором была.Например выражение говорит нам о том, что перед тем, как искать значение нужно "пройти" по окружности(в нашем случае против часовой стрелки, т.к. +,а не -)2.=3.14 радиан и = 180 градусам. т.е. если у нас есть +- 2, это значит, что мы делаем ровно один круг по окружности(360 градусов).Фактически, если у тебя есть такое выражение:, то ты можешь смело отбрасывать 2, т.к. они,фактически, не влияют на решение. Другое же дело, если у тебя стоит просто . Тогда тебе придётся перенести точку на 180 градусов, и уже к ней прибавлять угол(Пример:. Здесь тебе придётся перенести точку на 180 градусов и прибавить к ней угол sin.Это будет третья четверть, а значит знак в ответе будет отрицательный(ответ:.). Число оборотов, это n.При чём оно может быть не целым, отрицательным и т.д. но это уже совсем другая история.А вообще, наглядно это усваивается гораздо проще.Поэтому рекомендую подойти к учителю и лично попросить объяснить.
....................................................