1)
16π/15 = π + (π/15)
17π/16 = π + (π/16)
На отрезке [π/2; 3π/2] функция sin убывает, то есть большему аргументу соответствует меньшее значение функции (на этом отрезке).
Итак,
π/2 < 17π/16 < 16π/15 < 3π/2
sin(π/2) > sin(17π/16) > sin(16π/15) > sin(3π/2)
1 > sin(17π/16) > sin(16π/15) > -1
2)
4/7 > 5/9
проверим это, домножим данное неравенство на положительное число (7·9)
4·9 > 5·7
36 > 35. Истина,
итак
4/7 > 5/9
домножим последнее неравенство на отрицательное число (-1)
-4/7 < -5/9
домножим последнее неравенство на положительное число π
-4π/7 < -5π/9
функция ctg - это убывающая функция на интервале (-π; 0), то есть большему значению аргумента соответствует меньшее значение функции (для этого интервала).
-π < -4π/7 < -5π/9 < 0
ctg(-4π/7) > ctg(-5π/9)
1) 11х = 36 - х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
36 - x = - ( x - 36)
Уравнение после преобразования:
11x = - (x - 36)
Упрощаем:
12x = 36
Сокращаем:
12(убираем)x = 12(убираем) * 3
x=3
2) 9х + 4 = 48 - 2х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
48 - 2x = -2 * (x - 24)
Уравнение после преобразования:
9x + 4 = -2 * (x - 24)
Упрощаем:
11x = 44
Сокращаем:
11(убираем)x = 11(убираем) * 4
x=4
3) 8 - 4х = 2х - 16
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование левой части уравнения:
8 - 4x = -4 * (x - 2)
Делаем преобразование правой части уравнения:
2x - 16 = 2 * (x - 8)
Уравнение после преобразования:
-4 * (x - 2) = 2 * (x - 8)
Упрощаем:
-6x = -24
Сокращаем:
-6(убираем)x = -6(убираем) * 4
x = 4
За остальным, если желаешь - в ЛС.
1)возростающая
2)ворос
3)убывающая
4)убыв
5)убыв
6)возрос
7)возрос
8)возрос