Обратим внимание, что выражения в скобках похожи. Обозначим выражение во второй скобке за t. Тогда получим t=x+1/x. Но вторую скобку заменить также "в лоб" мы не можем. Пойдём на небольшую хитрость. Возведём наше t в квадрат. Получим: t^2=x^2+2x*1/x+1/x^2=x^2+2+1/x^2. Получившееся значение уж больно похоже на то, что нам нужно. Всю картину портит только двойка справа. Но поскольку двойка балом не правит и никак не зависит от х, то просто перенесём её влево к нашему t^2. Тогда что мы имеем? А имеем мы вторую замену, поскольку только что выразили нашу первую скобку: x^2+1/x^2=t^2-2. Теперь собираем урожай и производим замену. Получаем: (t^2-2)+t=0 --> t^2+t-2=0. А это есть ни что иное как квадратное уравнение. Находим дискриминант: D=1-4*(-2)=1+8=9. И корни: t1= (-1+3)/2=1; t2=(-1-3)/2=-2 Делаем обратную замену. Вспомним, что наше t=x+1/x. Сначала подставим t1: x+1/x=1 | домножим на х x^2+1=x --> x^2-x+1=0. Получаем ещё одно квадратное уравнение, но уже относительно х. Находим его дискриминант: D=1-4<0. Дискриминант меньше нуля. Следовательно, корней нет. Теперь подставим t2: x+1/x=-2 |домножим на х x^2+1=-2x --> x^2+2x+1=0. Решим квадратное уравнение. Посчитаем дискриминант: D=4-4=0. Найдём корень уравнения. x=(-2+/-0)/2=-1 Теперь смотрим на наши квадратные уравнения относительно х (первое с t не трогаем). В первом квадратном уравнении у нас корней не было, во втором всего один. Он и является ответом ответ: х=-1
Шестерка может выпасть только один раз двумя 1. При первом броске выпала 6. Вероятность этого события P₁=1/6. При втором броске не выпола 6. Вероятность этого события P₂=5/6. Итого вероятность, что при первом броске выпедет 6, а при втором нет P=P₁P₂=(1/6)(5/6)=5/36 2. При первом броске выпала не 6. Вероятность этого события P₁=5/6. При втором броске выпола 6. Вероятность этого события P₂=1/6. Итого вероятность, что при первом броске выпедет 6, а при втором нет P=P₁P₂=(5/6)(1/6)=5/36
Нас устроит любой из этих случаев, поэтому вероятностьь того, что шестерка выпадет только один раз равна сумме их вероятностей
Но вторую скобку заменить также "в лоб" мы не можем. Пойдём на небольшую хитрость. Возведём наше t в квадрат. Получим: t^2=x^2+2x*1/x+1/x^2=x^2+2+1/x^2.
Получившееся значение уж больно похоже на то, что нам нужно. Всю картину портит только двойка справа. Но поскольку двойка балом не правит и никак не зависит от х, то просто перенесём её влево к нашему t^2.
Тогда что мы имеем? А имеем мы вторую замену, поскольку только что выразили нашу первую скобку: x^2+1/x^2=t^2-2.
Теперь собираем урожай и производим замену. Получаем:
(t^2-2)+t=0 --> t^2+t-2=0. А это есть ни что иное как квадратное уравнение.
Находим дискриминант: D=1-4*(-2)=1+8=9.
И корни: t1= (-1+3)/2=1;
t2=(-1-3)/2=-2
Делаем обратную замену. Вспомним, что наше t=x+1/x.
Сначала подставим t1:
x+1/x=1 | домножим на х
x^2+1=x --> x^2-x+1=0. Получаем ещё одно квадратное уравнение, но уже относительно х. Находим его дискриминант: D=1-4<0. Дискриминант меньше нуля. Следовательно, корней нет.
Теперь подставим t2:
x+1/x=-2 |домножим на х
x^2+1=-2x --> x^2+2x+1=0. Решим квадратное уравнение. Посчитаем дискриминант: D=4-4=0. Найдём корень уравнения. x=(-2+/-0)/2=-1
Теперь смотрим на наши квадратные уравнения относительно х (первое с t не трогаем).
В первом квадратном уравнении у нас корней не было, во втором всего один. Он и является ответом
ответ: х=-1