Объяснение:
Имеется два существенно различных задания множеств. Можно либо перечислить все элементы множества, либо указать правило для определения того, принадлежит или не принадлежит рассматриваемому множеству любой данный объект.
Два множества A и B называются равными, если они состоят из одних и тех же элементов, т. е. если каждый элемент множества A принадлежит B и, обратно, каждый элемент B принадлежит A. Тогда пишут A = B.
Пустое множество — множество, не содержащее ни одного элемента. Одноэлементное множество — множество, состоящее из одного элемента. Универсальное множество (универсум) — множество, содержащее все мыслимые объекты.
Пересечением двух множеств, называется третье множество, сформированное из элементов, которые входят в оба первых множества.
Объединением двух множеств A и B называется множество A B, состоящее из тех и только тех элементов, которые принадлежат хотя бы одному из множеств A или B. Пересечением множеств A и B называется множество A B, которое состоит из тех и только тех элементов, которые принадлежат как множеству A, так и множеству B.
9x² + 12x + 4 = 10 + 3(x² - 4)
9x² + 12x + 4 = 10 + 3x² - 12
9x² - 3x² + 12x + 4 + 2 = 0
6x² + 12x + 6 = 0
x² + 2x + 1 = 0
D = b² - 4ac = 4 - 4 × 1 = 0 - имеет один корень.
x = - b/2a
x = - 2 / 2 = - 1
ответ: x = - 1.
2) (2x - 3)(2x - 3) =9 - 2(x - 3)(x + 3)
4x² - 12x + 9 = 9 - 2( x² - 9)
4x² - 12x + 9 = 9 - 2x² + 18
4x² + 2x² - 12x + 9 - 9 - 18 = 0
6x² - 12x - 18 = 0
x² - 2x - 3 = 0
D = b² - 4ac = 4 - 4 ×(- 3 )= 4 + 12 = 16 = 4²
x1 = (2 + 4)/2 = 3
x2 = ( 2 - 4) /2 = - 1.
3) (x + 2)(x² - 2x + 4) - x²(x + 2) = 0
x³ - 2x² + 4x + 2x² - 4x + 8 - x³ - 2x² = 0
- 2x² + 8 = 0
- 2x² = - 8
2x² = 8
x² = 4
x = 2
x = - 2
4) (x - 1)(x² + x + 1) - x²(x - 1) = 0
x³ + x² + x - x² - x - 1 - x³ + x² = 0
x² - 1 = 0
x² = 1
x = 1
x = - 1
ответ: x = 1, x = - 1.