М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Bloger1579
Bloger1579
03.03.2023 13:20 •  Алгебра

Решить уравнение (x-2)/(x^2-1)=(1-2x)/(x^2-1))

👇
Ответ:
Zarinka952
Zarinka952
03.03.2023

(x-2)/(x^2-1)-(1-2x)/(x^2-1)=(x-2-1+2x)/(x^2-1)=(3x-3)/(x-1)(x+1)=3(x-1)/(x-1)(x+1)=3/x+1

3/x=-1

x=3/(-1)

x=-3

 

4,4(9 оценок)
Ответ:
kostrominalekceu
kostrominalekceu
03.03.2023

(x-2)/(x^2-1)=(1-2x)/(x^2-1)

(x-2)(x^2-1)=(x^2-1)(1-2x)

одинаковые скобки можно сократить

х-2=1-2х

3х=3

х=1

4,8(28 оценок)
Открыть все ответы
Ответ:
Catandgog
Catandgog
03.03.2023
Решение:

Данное двойное неравенство равносильно системе двух квадратных неравенств:

\displaystyle \left \{ {{ 6x-9 < x^2} \atop { x^2 \leq 4x-3}} \right. ; \;\;\; \left \{ {{ x^2 - 6x + 9 0} \atop { x^2 - 4x+ 3 \leq 0}} \right.

Первое неравенство x^2 - 6x + 9 0.

Заметим, что в левой части скрывается квадрат разности (формула (a-b)^2 = a^2 - 2ab+b^2): (x-3)^2 = x^2 - 6x + 9.

Неравенство принимает следующий вид: (x-3)^2 0.

Так как квадрат числа всегда неотрицательный, то нам не подходит всего лишь один случай: (x-3)^2 = 0 и x=3.

Значит, первой неравенство эквивалентно тому, что x \ne 3.

Второе неравенство x^2 - 4x + 3 \leq 0.

Вс уравнение x^2-4x+3=0 имеет по теореме Виета (утверждающей, что x_1x_2=3 и x_1+x_2=4) корни x_1=1 и x_2=3.

Из этого следует разложение левой части на множители: (x-1)(x-3) \leq 0.

Метод интервалов подсказывает решение x \in [ 1; 3 ].

     + + +                 - - -                    + + +    

_________[ \; 1 \; ]_________[ \; 3 \; ]_________

                     \\\\\\\\\\\\\\\\\\\\\

Значит, второе неравенство равносильно тому, что 1 \leq x \leq 3.

Имеем значительно более простую систему неравенств:

\displaystyle \left \{ {{ x\neq 3} \atop {1 \leq x \leq 3}} \right.

Вполне понятно, что ее решением является 1 \leq x < 3 (как пересечения двух промежутков).

Или же { x \in [1 ; 3)}.

Задача решена!

ответ:

\Large \boxed { \bf x \in \Big [ \; 1 ; \; 3 \; \Big )}

4,6(83 оценок)
Ответ:
gunelmustafaeva
gunelmustafaeva
03.03.2023
Выпишем все двузначные квадраты: 16, 25, 36, 49, 64, 81.
Если это число начиналось с 1, то первые цифры только 16, значит 2-я и 3-я цифры - 64, после этого (3-я и 4-ая) может быть только 49. Дальше продолжать не можем, потому что нет двузначных квадратов, начинающихся с 9. Итак, максимальное число начинающееся с 1 и удовлетворяющее условию 1649
Аналогично для 2 получаем 25, т.к. на 5 двузначных квадратов нет. И т.д.:
Начинающееся на 3:  3649
на 4: 49
на 5 - таких чисел нет
на 6: 649
на 7: - таких нет, т.к. нет двузначных квадратов начинающихся с 7.
на 8: - 81649
на 9: - нет.
Итак, наибольшее: 81649.
4,6(55 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ