Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
V₁=V - V₀ (за V₀ примем скорость течения реки,а за v -скорость катера)-это когда он ехал против течения;
V₂=V+V₀ -скорость по течению;
V₃=V -скорость в стоячей воде;
t₁ -время против течения;
t₂ -время по течению;
Теперь вспомним формулу пути: S=V*t (где V -скорость катера,а t -его время)
По условию сказано,что по течению за 5 часов он путь на 20 км больше чем против течения за 4 часа.
Теперь подставим в формулу пути значения времени и формулу скорости(выведенную вначале).
S₁=V₁×t₁=(вместо V₁ пишем V -V₀);=(V-V₀)×4;(Время нам дано по условию)
S₂=V₂×t₂=(вместо V₂ пишем V+V₀);=(V+V₀)×5;
Получаем систему уравнений прощения, знака системы не нашёл):
(15,5-V₀)×4=S₁
(15,5+V₀)×5=S₂
Но мы знаем разницу S₂-S₁=20
И теперь вместо S₂ и S₁ подставляем в эту разницу (15,5+V₀)×5 и (15,5-V₀)×4 соответственно.
После раскрытия скобок и привидения подобных получаем: 9V₀=4,5.
Отсюда легко находим V₀. V₀= 0,5км/час