1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)


Это функция общего вида
2)


Это функция общего вида
3)


Это функция общего вида
3.
1)

Значит
![min_{[2;4]}f(x)=min_{[-4;-2]}f(x)=-1\\max_{[2;4]}f(x)=max_{[-4;-2]}f(x)=3](/tpl/images/3904/3705/69e2d.png)
2)

Значит
![min_{[2;4]}f(x)=-min_{[-4;-2]}f(x)=1\\max_{[2;4]}f(x)=-max_{[-4;-2]}f(x)=-3](/tpl/images/3904/3705/5cc0f.png)
4.

Это биквадратное уравнение. Делаем подстановку

Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно

Делаем проверку:
1) а=-1

Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3

Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1
а) x² + 4x + 10 ≥ 0
D = 4² - 4· 10 = - 24
График функции у = x² + 4x + 10 - парабола веточками вверх, пересечения с осью Ох нет, т.к. D < 0, поэтому у > 0 и ответ
2) Решением неравенства является вся числовая прямая
b) -x² + 10x - 25 > 0
-(х - 5)² > 0
Поскольку -(х - 5)² < 0 при любых х, то ответ
1) Неравенство не имеет решений
c) x² + 3x + 2 ≤ 0
D = 3² - 4 · 2 = 1
x₁ = 0.5(-3 - 1) = -2
x₂ = 0.5(-3 + 1) = -1
График функции у = x² + 3x + 2 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = -1 поэтому решением неравенства является интервал [-2; -1] , и ответ
4) Решением неравенства является закрытый промежуток.
d) -x² + 4 < 0
x² - 4 > 0
График функции у = x² - 4 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = 2 поэтому решением неравенства является интервалы (-∞; -2) и (2; +∞) , и ответ
6) Решением неравенства является объединение двух промежутков.
(-1 ; -1)
(0; 0)
(1; 1)
Объяснение: вот