М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ivanignatov201
ivanignatov201
17.07.2020 14:14 •  Алгебра

Ви б хотіли після закінчення вузу поїхати на Маямі. Путівка з оплатою проізду коштує 80 000 грн. Банк приймае кошти на депозити під складні відсотки за рівнем 50% річних. Скільки грошей вам треба покласти в банк, шоб через 5 років отримати необхідну суму,​

👇
Открыть все ответы
Ответ:
asyamilos
asyamilos
17.07.2020

пример.рассмотрим следующую линейную функцию: y = 5x – 3.

1) d(y) = r;

2) e(y) = r;

3) функция общего вида;

4) непериодическая;

5) точки пересечения с осями координат:

ox:   5x – 3 = 0, x = 3/5, следовательно (3/5; 0) – точка пересечения с осью абсцисс.

oy:   y = -3, следовательно (0; -3) – точка пересечения с осью ординат;

6) y = 5x – 3 – положительна при x из (3/5; +∞),

y = 5x – 3 – отрицательна при x   из (-∞; 3/5);

7) y = 5x – 3 возрастает на всей области определения; линейной функцией называется функция вида y = kx + b, заданная на множестве всех действительных чисел. здесь k – угловой коэффициент (действительное число), b – свободный член (действительное число), x – независимая переменная.

в частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси ox, проходящая через точку с координатами (0; b).

если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.

смысл коэффициента b – длина отрезка, который отсекает прямая по оси oy, считая от начала координат.

смысл коэффициента k – угол наклона прямой к положительному направлению оси ox, считается против часовой стрелки.

свойства линейной функции:

1) область определения линейной функции есть вся вещественная ось;

2) если k ≠ 0, то область значений линейной функции есть вся вещественная ось. если k = 0, то область значений линейной функции состоит из числа b;

3) четность и нечетность линейной функции зависят от значений коэффициентов k и b.

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) свойством периодичности линейная функция не обладает;

5) точки пересечения с осями координат:

ox:   y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

oy:   y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.

замечание.если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.

6) промежутки знакопостоянства зависят от коэффициента k.

a) k > 0;   kx + b > 0, kx > -b, x > -b/k.

y = kx + b – положительна при x   из (-b/k; +∞),

y = kx + b – отрицательна при x   из (-∞; -b/k).

b) k < 0; kx + b < 0, kx < -b, x < -b/k.

y = kx + b – положительна при x   из (-∞; -b/k),

y = kx + b – отрицательна при x   из (-b/k; +∞).

c) k = 0, b > 0; y = kx + b положительна на всей области определения,

k = 0, b < 0; y = kx + b отрицательна на всей области определения.

7) промежутки монотонности линейной функции зависят от коэффициента k.

k > 0, следовательно y = kx + b возрастает на всей области определения,

k < 0, следовательно y = kx + b убывает на всей области определения.

8) графиком линейной функции является прямая. для построения прямой достаточно знать две точки. положение прямой на координатной плоскости зависит от значений коэффициентов k и b. 

4,6(13 оценок)
Ответ:
kamilskylinep0a6rx
kamilskylinep0a6rx
17.07.2020

Решим задачу на движение по воде

Дано:

t(по течению) = 2 ч

t(против течения)=3 ч

v(собств.)=18,6 км/ч

v(теч.)=1,3 км/ч

Найти

S=? км

Решение

1) Найдём скорость катера против течения реки:

v(против течения)=v(собственная) - v (течения реки)=18,6-1,3=17,3 (км/час)

2) Катер плыл 3 часа против течения со скоростью 17,3 км/час. Найдём расстояние, которое катер проплыл против течения:

S(расстояние)=v(скорость)×t(время)

S(против течения)=17,3×3= 51,9 (км)

3) Найдём скорость катера по течению:

v(по течению)=v(собственная) + v (течения реки)=18,6+1,3=19,9 (км/час)

4) Катер плыл 2 часа против течения со скоростью 19,9 км/час. Найдём расстояние, которое катер проплыл по течению:

S(расстояние)=v(скорость)×t(время)

S(по течению)=2×19,9=39,8 (км)

5) Расстояние за 5 часов равно:

S=S(против течения)+S(по течению)=51,9+39,8=91,7 (км)

ОТВЕТ: катер за 5 часов проплыл расстояние 91,7 километров.

КРАТКО

Решим данную задачу по действиям с пояснениями.

1) 18,6 + 1,3 = 19, 9 километров в час - скорость катера по течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;

2) 18,6 - 1,3 = 17, 3 километров в час - скорость катера против течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;

3) 3 * 17,3 = 51,9 километров - расстояние, которое проплыл катер против течения реки;

4) 2 * 19,9 = 39,8 километров - расстояние, которое проплыл катер по течения реки;

5) 51,9 + 39,8 = 91,7 километров - такой путь проплыл катер.

ответ: 91,7 километров.

4,5(62 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ