В решении.
Объяснение:
Решить систему уравнений:
3х+2у=2
3х-2у=1 методом сложения
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, коэффициенты при у одного значения и с противоположными знаками.
Складываем уравнения:
3х+3х+2у-2у=2+1
6х=3
х= 0,5
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
3х+2у=2
3*0,5+2у=2
2у=2-1,5
2у=0,5
у=0,25
Решение системы уравнений (0,5; 0,25).
Система уравнений имеет единственное решение, значит, графики данных уравнений пересекаются (координаты точки пересечения и являются решением системы уравнений).
ОКАНЧИВАЕТСЯ НА 4.
1)ЧИСЛО 2 В СТЕПЕНИ 99 ОКАНЧИВАЕТСЯ НА ЦИФРУ 8.
если составить небольшую табличку,
2 в степени 1 оканчивается на 2
2 2 4
2 3 8
2 4 6
если продолжать дальше,то последовательность чисел будет постоянно повторяться,то есть любая степень числа 2 может оканчиваться на 2,4,8 или на 6 (ну,еще есть 2 в степени ноль,но это только единичный случай)
с этой таблички вычисляем,что 2 в степени 99 оканчивается на цифру 8.
2) теперь смотрим таблицу умножения на 7.
число,оканчивающееся на цифру 8 - только 28 (4*7=28),соответственно,при делении на 7 числа,оканчивающегося на цифру 8 может получиться только число,оканчивающееся на цифру 4.