1 шаг - переворачиваете дроби, т.е. числитель делаете знаменателем, а знаменатель числителем. или выражаюсь культурным языком, находите обратную дробь к данной, при этом меняете показатель на положительный
2 шаг. возводите степень в степень, при этом перемножаете показатели.
3 шаг. произведение дробей прибираете к рукам, т.е. подгоняете под одну дробную черту произведение знаменателей, а числители перемножаете и записываете в числителе, иными словами, записываете по правилу произведение дробей.
4 шаг. Выделяете отдельно одинаковые буквы, отдельно числа, т.е. обосабливаете их для того, чтобы легче сократить.
5 шаг. Сокращаете дроби.
6 шаг. Любуетесь своей работой.
НО я бы решал легче, сделал бы все показатели положительными, а потом сократил. и уже на третьем шаге отдыхал. Удачи.
На этой странице я расскажу об одном популярном классе задач, которые встречаются в любых учебниках и методичках по теории вероятностей - задачах про бросание монет (кстати, они встречаются в части В6 ЕГЭ). Формулировки могут быть разные, например "Симметричную монету бросают дважды..." или "Бросают 3 монеты ...", но принцип решения от этого не меняется, вот увидите.
найти вероятность, что при бросании монеты
Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать "бросают 3 монеты" или "бросают монету 3 раза", результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).
Для задач о подбрасывании монеты существуют два основных метода решения, один - по формуле классической вероятности (фактически переборный метод, доступный даже школьникам), а также его более сложный вариант с использованием комбинаторики, второй - по формуле Бернулли (на мой взгляд он даже легче первого, нужно только запомнить формулу). Рекомендую по порядку прочитать про оба метода, и потом выбирать при решении подходящий.
Объяснение:
ОТ СДЕЛАЙТЕ ДВА ЭТИХ ЗАДАНИЯ