(x-3)/(x+4)<0 Дробь меньше нуля, когда числитель и знаменатель имеют разные знаки соответсвенно мы получаем две системы уравнений: (x-3)<0 и (x-3)>0 (x+4)>0 (x+4)<0 первая нам даст x<3 и x>-4 следовательно решением является x принадлежит(-4;3) либо второй вариант из второй системы x>3 и x<-4 следовательно решением является x принадлежит(-бесконечности;-4)и(3;+бесконечность) Объедения эти решения мы получим, что х принадлежит (-бесконечности;-4) и (-4;3) и (3;+бесконечность)
x2 - 9 >0 - если это x^2 - 9 >0 то x^2>9 |x|>3 что записывается в виде: x принадлежит (-бесконечности;-3) и (3;+бесконечность)
Y=5*5-4
Y=25-4=21
Объяснение:
21