1) Обозначим искомую линейную функцию у = kx +b. По условию её график параллелен прямой y=2x+11, следовательно угловые коэффициенты этих функций равны => k = 2 => искомая функция принимает вид у = 2x +b. 2) По условию график искомой функции пересекается с графиком y=x-3 в точке, лежащей на оси ординат, значит функции у = 2x +b, y=x-3 и ось ординат OY, которая задается формулой x = 0 пересекаются в одной точке. Решаем систему: у = 2x +b y=x-3 x = 0
Получаем: b = - 3. T.о. искомая функция имеет вид: у = 2x - 3
Графиками будут является прямые , к1 не равно к2 поэтому прямые пересекутся, координаты точки пересечения и будут решением системы. Для построения прямой достаточно 2 точек. У=1/3х - 8/3 Пусть Х=0 тогда У=1/3*0 - 8/3= 8/3= -2 2/3 А(0;-2 2/3)
Пусть Х=2 тогда У=1/3*2-8/3= 2/3-2 2/3 = -2. В(2;-2) Через точки А и В проведи прямую
У=2/3х -10/3 Пусть Х =0 у= - 3 1/3 С(0; -3 1/3) Х= 1 У=2/3*1 - 3 1/3= - 2 /2/3 D(1; -2 2/3) Через точки С и D проведи прямую они пересекутся, из точки пересечения опусти перпендикуляры на оси Х и У это и будет решение.
2*2+2=6
1) 2*2=4
2) 4+2=6