М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ДашаУмняшаТ
ДашаУмняшаТ
13.03.2020 16:18 •  Алгебра

Решить уравнения, безмерно благодарен, если не знаешь, не отвечай


Решить уравнения, безмерно благодарен, если не знаешь, не отвечай

👇
Открыть все ответы
Ответ:
Katerina9322
Katerina9322
13.03.2020

1+sinx·√(2ctgx) ≤ 0

Подкоренное выражение не может быть отрицательным

ctg x ≥ 0    0.5π ≥ x > 0 это в 1-й четверти

                 1.5π ≥ x > π это в 3-й четверти

в 1-й четверти sinx > 0 и выражение 1+sinx·√(2ctgx)> 0

в 3-й четверти sinx < 0 и выражение 1+sinx·√(2ctgx)может стать меньше 0, если

sinx·√(2ctgx) ≤ -1

делим на отрицательный синус

√(2ctgx) ≥ -1/sinx

обе части положительны

возводим в квадрат

2ctgx ≥ 1/sin²x

2ctgx ≥  1 + ctg²x

1 + ctg²x - 2ctgx ≤ 0

(1 - ctgx)² ≤ 0

Квадрат любого числа не может быть отрицательным, поэтому остаётся только

равенство нулю:

1 - ctgx = 0

ctgx = 1  (четверть 3-я!)

х = 5/4π

Решение единственное: при х = 5/4π выражение 1+sinx·√(2ctgx) = 0

ну, и, разумеется следует добавить 2πn, тогда решение такое:

х = 5/4π +2πn

 

4,5(24 оценок)
Ответ:
bongtangirl
bongtangirl
13.03.2020
1) Вычислим производную функции : 
y'=(x^2+6x+8)'=(x^2)'+(6x)'+(8)'=2x+6
Приравниваем производную функции к нулю
2x+6=0\\ x=-3
а) Найдем промежутки возрастания и убывания функции:
_____-___(-3)___+____
Функция возрастает на промежутке (-3;+\infty) , а убывает - (-\infty;-3)
б) Найти точки экстремума.
В точке х=-3 производная функции меняет знак с (-) на (+), следовательно, х=-3 - точка минимума.
в) Наибольшее и наименьшее значение функции на отрезке [-4;1].
Найдем значения функции на концах отрезка.
y(-4)=(-4)^2+6\cdot(-4)+8=0
y(-3)=(-3)^2+6\cdot(-3)+8=-1  - наименьшее
y(1)=1^2+6\cdot1+8=15  - наибольшее
Пример 2.  Общий вид уравнения касательной имеет вид: f(x)=y'(x_0)(x-x_0)+y(x_0)
1. Найдем значение функции в точке х0=2
y(2)=2^2=4
2. Производная функции:
y'=(x^2)'=2x
3. Вычислим значение производной функции в токе х0=2
y'(2)=2\cdot2=4
Искомое уравнение касательной: f(x)=4(x-2)+4=4x-4
Пример 3.  
Решить неравенство методом интервалов                           
  \dfrac{x^2-1}{x+7}\ \textgreater \ 0

Решение:

Рассмотрим функцию f(x)= \dfrac{x^2-1}{x+7}

Область определения функции: (-\infty;-7)\cup(-7;+\infty)

Приравниваем функцию к нулю:
\dfrac{x^2-1}{x+7}=0\\ x^2-1=0\\ x=\pm1

Находим теперь решение неравенства
____-__(-7)___+__(-1)___-___(1)___+____
ответ:  x \in (-7;-1)\cup(1;+\infty)
1)дана функция y=x^2+6x+8. найдите: а)промежутки возрастания и убывания функции б)точки экстремума в
4,5(3 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ