1) Вычислим производную функции : Приравниваем производную функции к нулю а) Найдем промежутки возрастания и убывания функции: _____-___(-3)___+____ Функция возрастает на промежутке , а убывает - б) Найти точки экстремума. В точке х=-3 производная функции меняет знак с (-) на (+), следовательно, х=-3 - точка минимума. в) Наибольшее и наименьшее значение функции на отрезке [-4;1]. Найдем значения функции на концах отрезка. - наименьшее - наибольшее Пример 2. Общий вид уравнения касательной имеет вид: 1. Найдем значение функции в точке х0=2 2. Производная функции: 3. Вычислим значение производной функции в токе х0=2 Искомое уравнение касательной: Пример 3. Решить неравенство методом интервалов
Решение:
Рассмотрим функцию
Область определения функции:
Приравниваем функцию к нулю:
Находим теперь решение неравенства ____-__(-7)___+__(-1)___-___(1)___+____ ответ:
1+sinx·√(2ctgx) ≤ 0
Подкоренное выражение не может быть отрицательным
ctg x ≥ 0 0.5π ≥ x > 0 это в 1-й четверти
1.5π ≥ x > π это в 3-й четверти
в 1-й четверти sinx > 0 и выражение 1+sinx·√(2ctgx)> 0
в 3-й четверти sinx < 0 и выражение 1+sinx·√(2ctgx)может стать меньше 0, если
sinx·√(2ctgx) ≤ -1
делим на отрицательный синус
√(2ctgx) ≥ -1/sinx
обе части положительны
возводим в квадрат
2ctgx ≥ 1/sin²x
2ctgx ≥ 1 + ctg²x
1 + ctg²x - 2ctgx ≤ 0
(1 - ctgx)² ≤ 0
Квадрат любого числа не может быть отрицательным, поэтому остаётся только
равенство нулю:
1 - ctgx = 0
ctgx = 1 (четверть 3-я!)
х = 5/4π
Решение единственное: при х = 5/4π выражение 1+sinx·√(2ctgx) = 0
ну, и, разумеется следует добавить 2πn, тогда решение такое:
х = 5/4π +2πn