Пусть А - событие, которое состоится, если наудачу взятое двузначное число кратно 2, а В - событие, которое состоится, если это число кратно 7. Надо найти Р(А + В).Так как А и В - события совместные, то:
Р(А + В) = Р(А) + Р(В) - Р(АВ).
Двузначные числа - это 10, 11, . . . ,98, 99.
Всех их- 90 элементарных исходов. Очевидно, 45 из них кратны 2 (благоприятствуют наступлению А),
13 кратны 7 (благоприятствуют наступлению В) и ,наконец,7 кратны и 2, и 7 одновременно (благоприятствуют наступлению А×В). Далее по классическому определению вероятности:
Р(А) = 45/90 Р(В) = 13/90 Р(А×В) = 7/90
и, следовательно:
Р(А + В) = 45/90 + 13/90 - 7/90 = 51/90
ответ: 51/90
2)
Дробь равна 0, если числитель равен 0, а знаменатель нет.
{ 4sin^2(x) - 3 = 0
{ 2cos x - 1 ≠ 0
Решаем
{ sin^2(x) = 3/4
{ cos x ≠ 1/2
Из 1 уравнения получаем два:
1) sin x = -√3/2; x1 = -pi/3 + 2pi*k; x2 = 4pi/3 + 2pi*k
Но cos x1 = 1/2, поэтому не подходит. cos x2 = -1/2, подходит.
2) sin x = √3/2; x3 = pi/3 + 2pi*k; x4 = 2pi/3 + 2pi*k
Но cos x3 = 1/2, поэтому не подходит. cos x4 = -1/2, подходит.
ответ: x1 = 4pi/3 + 2pi*k; x2 = 2pi/3 + 2pi*k
3) Трапеция показана на рисунке.
P(ABCD) = 86, BC = 27, OM = OE = ON = OK = AE = AN = DM = DN = R
По свойству трапеции, описанной около окружности, EB = BK, CK = CM.
Но BC = BK + CK = 27. Тогда EB + CM = BC = 27, а периметр трапеции:
P = AN + DN + DM + CM + CK + BK + EB + AE
P = 4R + BC + BC = 4R + 2*27 = 4R + 54 = 86
R = (86 - 54)/4 = 32/4 = 8
4) Если диагональ осевого сечения цилиндра образует угол 45°, то диаметр цилиндра равен его высоте.
D = H = 12
Радиус R = D/2 = 6
5) Диагональ грани куба d = a√2 = 3√2, отсюда ребро куба a = 3.
Объем куба V = a^3 = 3^3 = 27