М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
сакуру3356
сакуру3356
12.10.2020 18:08 •  Алгебра

Симметричную монету бросили 2 раза. Найдите вероятность события, противоположного событию «орел не выпал ни разу» (ответ запишите в виде десятичной дроби)

👇
Ответ:
Andry211208
Andry211208
12.10.2020

Объяснение:

Монета брошена шесть раз.

В результате одного броска выпадет О или Р (Орел или Решка) с равной вероятностью 0,5.

Если записать результат 6 бросков, то получим цепочку, состоящую из 6 символов О или Р.

Например, исход - цепочка ООРОРО означает, что первый раз выпал Орел,

второй раз - Орел, третий раз - Решка и т.д..

Так как при каждом броске имеем 2 варианта (О или Р), а бросков 6,

то всего исходов (цепочек) имеем 26= 64. (В общем случае при n бросках имеем 2n исходов).

Пусть событие А = "Орел выпадет не менее трех раз" (3 или больше 3-х раз).

Противоположное событие (не А) = "Орел выпадет 1 раз, 2 раза или ни разу".

Подсчитаем количество исходов, при которых в цепочке

Орел будет встречаться 0, 1 или 2 раза.

- 1 исход (Орел не выпал ни разу)

Р, ОР, ООРООО, ОООРОО, РО, Р. 6 исходов (Орел выпал 1 раз).

С62 = 6!/(2!*4!) = 6*5/2=15 исходов, (Орел выпал 2 раза).

Всего благоприятных исходов (орел выпал более двух раз, т.е. не менее трех)

64 - (1+6+15) = 42.

Р = 42/64 = 0,65625

4,5(81 оценок)
Ответ:
Алена173
Алена173
12.10.2020

50/100 или 5/10

Объяснение:

4,4(64 оценок)
Открыть все ответы
Ответ:
desna80
desna80
12.10.2020
Разделим обе части уравнения на cos^2(x), получим:
2tg^2(x) + tgx - 3 = 0
D = 1 + 24 = 25
tgx = -1.5, x = -arctg(1.5) + πk, k∈Z
tgx = 1, x = π/4 + πk, k∈Z
Найдем корни x1, x2, которые принадлежат интервалу (0;π)
0 < -arctg(1.5) + πk < π
arctg(1.5)/π < k < 1 + (arctg(1.5)/π), k∈Z
k = 1, x1 = -arctg(1.5) + π
0 < π/4 + πk < π
-0.25 < k < 0.75, k∈Z
k = 0, x2 = π/4
Найдем теперь 5tg(x1+x2) = 5tg(π/4 + π - arctg(1.5)) = 5tg(π/4 - arctg(1.5)) = 5*(tg(π/4) -tg(arctg(1.5))/(1 + tg(π/4)*tg(arctg(1.5))) = 5*(1 - 1.5)/(1 + 1.5) = -5*0.5/2.5 = -1
4,4(9 оценок)
Ответ:

1.Решите неравенство методом интервалов

 

-х(в квадрате)-12х<0

 

-x^2-12x<0

-x(x-12)<0

x(x-12)>0

 

ищем критические точки х=0 - первая точка, х-12=0, х=12 - вторая точка

     +             -                    +                   

012>x

 

x=13: x(x-12)=13*(13-12)>0

значитна промежутке (12;+бесконечность) л.ч. неравенства больше 0

при переходе через точку 12, меняем знак с + на -, и получаем, что на промежутке (0;12) л.ч. неравенства меньше 0

при переходе через точку 0 меняем знак с - на + ,и получаем, что на промежутке

(-бесконечность; 0) л.ч неравенства больше 0,

таким образом решением неравенства будет

(-бесконечность; 0)обьединение(12;+бесконечность)


2.При каких значениях параметра m уравнение 

 

4х(в квадрате)-2mx+9=0

 

имеет два различных корня?

уравнение имеет два различных корня если дискриминант больше 0, т.е.

D=(-2m)^2-4*4*9=4m^2-144>0

4(m^2-36)>0

m^2-36>0

(m-6)(m+6)>0

ищем критические точки m+6=0, m=-6 - первая точка, m-6=0, m=6 - вторая точка(-6<6)

 

     +             -                    +                   

 

(-6)6>m

 

 

x=7: (m-6)(m+6)=(7-6)(7+6)>0

 

значитна промежутке (6;+бесконечность) л.ч. неравенства больше 0

 

при переходе через точку 6, меняем знак с + на -, и получаем, что на промежутке (-6;6) л.ч. неравенства меньше 0

 

при переходе через точку -6 меняем знак с - на + ,и получаем, что на промежутке

 

(-бесконечность; -6) л.ч неравенства больше 0,

 

таким образом решением неравенства будет

 

m Є (-бесконечность; -6)обьединение(6;+бесконечность)

 


 

 




4,7(16 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ