Как перевести периодическую дробь в обыкновенную: 1) Считаем количество цифр в периоде десятичной дроби. Обозначаем количество цифр за букву k. У нас k=1. 2) Считаем количество цифр, стоящих после запятой, но до периода десятичной дроби. Обозначаем количество цифр за букву m. У нас m=1. 3) Записываем все цифры после запятой (включая цифры из периода) в виде натурального числа. Обозначаем полученное число буквой a. У нас а=23. 4) Теперь записываем все цифры, стоящие после запятой, но до периода, в виде натурального числа. Обозначаем полученное число буквой b. У нас b=2. 5) Подставляем найденные значения в формулу , где Y — целая часть бесконечной периодической дроби (у нас Y=0), количество девяток равно k, количество нулей равно m.
1) 0,72; 2) 0,98
Объяснение:
Р₁=0,9 - вероятность попасть в цель для первого стрелка
Р₂=0,8 - вероятность попасть в цель для второго стрелка
1) Событие А - оба стрелка попали в цель
Применим теорему об умножении вероятностей, получим
Р(А)= Р₁*Р₂ =0,9*0,8 = 0,72
2) Событие В - хотя бы один стрелок попадёт в цель
Событие С - оба стрелка промахнутся
Вероятность Р(С) промаха у обоих стрелков (по теореме об умножении вероятностей) равна
Р(С) = (1-Р₁)(1-Р₂)=(1-0,9)(1-0,8)= 0,1*0,2 = 0,02
Событие В - это событие, противоположное событию С, значит,
Р(В) = 1 - Р(С) = 1-0,02 = 0.98