Объяснение:
б) (х² - 4х + 4) /( х -2) = 0 в) х² -81)/ (х² + 10х +9) = 0
(х - 2)² / (х - 2) = 0 ( х -9)( х +9) / ( х² +х +9х +9) =0
х - 2 = 0 ( х -9)( х +9) / [х ( x +1) +9( x + 1)} =0
х = 2 ( х -9)( х +9) / (x + 9) (x + 1) =0
ответ: х =2 ( x - 9)/(x + 1) =0
(x + 1) - знаменатель , не может быть = 0
х - 9= 0 х = 9 ответ: х =9
г) ( х + 2) / (х² -7х -18) = 0
(х + 2) / (х² +2х - 9х -18) = 0
( х + 2) / [ х( х +2) - 9(х+2) = 0
( х + 2) / (х +2) (х - 9) = 0
1 / (х - 9) = 0
ответ: решения не имеет, т.к. знаменатель не может быть = 0
д) (х² - 5х + 6) / (х² -9) = 0
( х² - 2 х - 3х + 6) / (х - 3) ( х + 3) = 0
[ (х ( х - 2) - 3( х - 2)] / (х - 3) ( х + 3) = 0
( х - 3) (х - 2) / (х - 3) ( х + 3) = 0
(х - 2) / ( х + 3) = 0
х - 2 = 0
х = 2
ответ: х = 2
1) х³ + х² - 6 * х = 0
х * (х² + х - 6) = 0
х₁ = 0 х₂ = 2 х₃ = -3
2) (x² - 2x + 3)(x² - 2x + 4) = 6
пусть х² - 2*х + 3 = т. уравнение принимает вид
т * (т + 1) = 6
т² + т - 6 = 0
т₁ = -3 т₂ = 2
1) х² - 2 * х + 3 = 2
х² - 2 * х + 1 = (х - 1)² = 0
х = 1
2) х² - 2 * х + 3 = -3
х²- 2 * х + 6 = 0
корней нет (дискриминант отрицательный)
3) 6*x² + 11*x - 2 = 0 6*x - 1
уравнение 6*x² + 11*x - 2 = 0 имеет 2 корня: х₁ = -2 х₂ = 1/6
второй корень не подходит, так как в этом случае знаменатель равен нулю
Пусть производительнось планируемая х кубометров в день.
тогда за 10 дней они должны были изготовить 10*х куб
но они перевыполняли на 20 куб в день х+20
и за день до срока 10-1=9 выполнили на 60 кубов больше
9*(х+20)=10*х+60
9х+180=10х+60
х=180-60=120 (норма в день)
За десять дней 10*120=1200 должны были изготовить