Объяснение:Скорость парохода в стоячей воде обозначим v км/ч. Скорость течения нам известна - 4 км/ч. По течению пароход км со скоростью v + 4 км/ч, против течения еще 48 км со скоростью v - 4 км/ч, и затратил на все это 5 ч времени. Составляем уравнение: 48/(v + 4) + 48/(v - 4) = 5 переносим 5 влево и приводим к общему знаменателю: [ 48*(v - 4) + 48*(v + 4) - 5(v + 4)(v - 4) ] / [ (v + 4)(v - 4) ] = 0 Числитель приравниваем к 0 и раскрываем скобки: 48v - 4*48 + 48v + 4*48 - 5(v^2 - 16) = 0 Раскрываем скобки и приводим подобные: 96v - 5v^2 + 80 = 0 Меняем знак: 5v^2 - 96v - 80 = 0 D/4 = 48^2 + 5*80 = 2304 + 400 = 2704 = 52^2 v1 = (48 - 52) / 5 < 0 v2 = (48 + 52) / 5 = 20 ответ: 20 км/ч.
Координаты заданной точки: (3; -3).
2) Точка A(a;3), если a>0 расположена в 1 четверти ( или координатном угле ), где находятся положительные значения и х и у.
3) Точка В: х = -2 + 5 = 3,
у = 3 (как у точки А).
Точка С: х = 3,
у = 3 - 5 = -2.
Точка Д: х = -2 (как у точки А),
у = -2 (как у точки С).
4) Координаты точки M - середины отрезка AB, если A(5;3) и B(−7;−2):
М((5+(-7))/2=-1; (3+(-2))/2=0,5)
М(-1; 0,5).