прямая y = kx+b проходит через точку пересечения прямых y = -3x+0.5 и y=6x-0.5 и не пересекает прямую y=17x - 5.найдите k и b
Решение: Так как искомая прямая не пересекает прямую y=17x - 5, то она параллельна этой прямой. Поэтому угловой коэффициент искомой прямой равен k=17 так как угловые коэффициенты параллельных прямых равны. Найдем точку пересечения прямых y = -3x+0,5 и y = 6x-0,5 -3х + 0,5 = 6х - 0,5 9х = 1 х = 1/9 y(1/9) = -3*(1/9) + 0,5 = -1/3 + 1/2 = -2/6 +3/6 =1/6 Получили точку (1/9;1/6) Подставим координаты точки в уравнение прямой с известным угловым коэффициентом y = kx + b 1/6 = 17*1/9 + b b = 1/6- 17/9 = 3/18 - 34/18 = -31/18 Запишем уравнение искомой прямой y = 17x - 31/17 ответ: y = 17x - 31/17
12(b-4)-18b(4-b)2=(4-b)(-12-72b+18b²)=6(4-b)(3b²-12b-2)
9a(5a-15)-18(15-5a)=(5a-15)(9a+18)=45(a-3)(a+2)
(x-1)3-25(x-1)=(x-1)(x²-2x+1-25)=(x-1)(x²-2x-24)
a2(5-b)+4(b-5)=(5-b)(a²-4)=(5-b)(a-2)(a+2)
9(5x-3)-x2(25x2-9)=9(5x-3)-x²(5x-3)(5x+3)=(5x-3)(9-5x³-3x²)
b3(a-7)+ 27(7-a)=(a-7)(b³-27)=(a-7)(b-3)(b²+3b+9)
20(3b-2)-5b(9b2-12b+4)=20(3b-2)-5b(3b-2)²=5(3b-2)(4-3b²+2b)
8x2(x-4)-24x(4-x)+18(x-4)=(x-4)(8x²+24x+18)=2(x-4)(4x²+12x+9)=2(x-4)(2x+3)²
8(x2+2x+1)-x3(x2-1)=8(x+1)²-x³(x-1)(x+1)=(x+1)(8x+8-x^4+x³)
x(x-5)2 – 3x2(5-x)=x(x-5)(x-5+3x)=x(x-5)(4x-5)
3(x-1)2 - 27=3((x-1)²-9)=3(x-1-3)(x-1+3)=3(x-4)(x+2)