1. Сначала вычисляем общее количество возможных вариантов события. Ты можешь взять 1 из любых 41+59=100 карандашей.
А — событие, при котором ты вытягиваешь зелёный карандаш. Вариантов исходов событий — 41.
Тогда P(A)=41/100 = 0,41
2. Общее количество возможных вариантов события расстановки шаров вычисляем как 5!=1×2×3×4×5=120.
B — событие, при котором составляется верная комбинация. Вариантов исходов событий — 1.
Тогда P(B)=1/120
3. Общее число возможных вариантов события вычисляем как 5!/2! = (2!×3×4×5)/2! = 60.
С — событие, при котором число кратно 5. Число кратно 5 тогда, когда оно заканчивается единицей. Число таких событий вычисляем как 4!/2! = (2!×3×4)/2! = 12.
Тогда P(C)=12/60=1/5=0,2.
4. Вероятность того, что попадётся тетрадь в клетку в первой стопке — 2/3. Вероятность того, что попадётся тетрадь в клетку во второй стопке — 2/5.
P(F) — событие, при котором из двух пачек вытягивают тетрадь в клетку. Подсчитаем число исходов, благоприятствующих этому событию (среди 3 тетрадей 1 будет в клетку): 1 тетрадь в клетку можно взять из 4 тетрадей в клетку С при этом остальные 2 тетради должны быть в линейку; взять же 2 тетради в линейку из 6 тетрадей в линейку можно С Следовательно, число благоприятствующих исходов равно С1/4 С2/6:
Р(F)=С1/4*С2/6:С3/10= 20/72=5/18.
5. Общее число возможных вариантов событий равно 36.
D — событие, при котором сумма очков делится на 9. Таких вариантов, благоприятствующих событию, — 4 (3+6; 6+9; 5+4; 4+5).
Тогда P(D)=4/36=1/9.
Насчёт четвёртого я не уверен.
29-36sin²(x-2)-36cos(x-2)=0
используем формулу sin²+cos²=1 или sin²=1-cos²
29-36(1-cos²(x-2))-36cos(x-2)=0
видно, что все свелось к cos(x-2), поэтому сделаем замену
y=cos(x-2) и -1≤y≤1
29-36(1-y²)-36y=0
29-36+36y²-36y=0
36y²-36y-7=0
D=36²+4*36*7=2304
√D=48
y₁=(36-48)/72=-12/72=-1/6
y₂=(36+48)/72=84/72>1 отпадает
итак, получаем
cos(x-2)=-1/6
x-2=+-arccos(-1/6)+2πn, n=0,+-1,+-2...
x=2+-arccos(-1/6)+2πnе: