1)
х3–2х2–х+2=(x–a)·(x–b)·(x–c)
Раскрываем скобки
х3–2х2–х+2=(x2–ax–bx+ab)·(x–c)
x3–2x2–x+2=x3–ax2–bx2–cx2+abx+acx+bcx–abc
Два многочлена равны, если степени равны и коэффициенты при одинаковых степенях равны:
–2=–a–b–c
–1=ab+ac+bc
2=–abc
a=2;b=1;c=–1
Система трех уравнений с тремя неизвестными.
Проще разложить на множители группировки:
(x3–2x2)–(x–2)=x2·(x–2)–(x–2)=(x–2)·(x–1)·(x+1)
2)
x4–13x2+36=(x2–a)·(x2–b)
x4–13x2+36=x4–ax2–bx2+ab
–13=–a–b
36=ab
Проще разложить на множители по формуле разложения кв трехчлена
D=132–4·36=169–144=25
x2=(13–5)/2=4; x2=(13+5)/2=9
x4–13x2+36=(x2–4)·(x2–9)
Объяснение: пусть скорость катера=х, и если он по течению, то его скорость увеличилась на 3км/ч, поэтому по течению он проплыл 48км со скоростью х+3. Когда он плыл против течения, то скорость течения ему не а наоборот и он проплыл 18км со скоростью х-3. По течению он потратил 48/х+3 времени, а против 18/х-3. Зная, что он потратил на всю дорогу 3 часа, составим уравнение:
(48/х+3)+(18/х-3)=3 |на этом этапе подбираем общий знаменатель:
(48х-144+18х+54)/(х+3)(х-3)=3
(66х-90)/(х²-9)=3 | перемножим числитель и знаменатель соседних дробей крест накрест:
(х²-9)3=66х-90
3х²-27-66х+90=0
3х²-66х+63=0 |÷3
х²-22х+21=0
Д=484-4×21=484-84=400
х1=(22-20)/2=2/2=1
х2=(22+20)/2=42/2=21
Итак: есть 2 варианта значения х, но первый вариант нам не подходит поскольку скорость катера на самом деле больше, чем 1км/ч, поэтому используем х2=21.
Скорость катера=21км/ч