Объяснение:
№8
Дано:
АН – высота;
ВН=4 дм;
НС=16 дм;
АВ=DC.
Проведём высоту DF к стороне ВС.
Рассмотрим прямоугольные треугольники АНВ и DFC.
АВ=DC по условию;
Так как основания трапеции паралельны, а АН и DF высоты, проведенные к основанию ВС, то АDFH прямоугольник. Следовательно АН и DF равны.
Тогда прямоугольные треугольники АНВ и DFC равны по гипотенузе и катету. Следовательно FC=BH=4;
HF=HC–FC=16–4=12 (дм).
Так как АDFH – прямоугольник (доказано ранее), то AD=HF=12 (дм)
ответ: Б) 12 дм.
№9
Рассмотрим треугольник АВН.
Так как АН – высота (по условию), то угол АНВ=90, тогда треугольник АВН прямоугольный.
Сумма углов при одной его стороне равна 180°, тогда:
угол ABH= 180°– угол BAD=180°–150°=30°
В прямоугольном треугольнике напротив угла в 30° лежит катет вдвое меньший гипотенузы, тоесть:
АН=АВ÷2=10÷2=5 см.
S=ah, где S–площадь паралелограмма, а– сторона паралелограмма, h– высота паралелограмма.
Подставим значения:
S=15*5=75 см²
ответ: В) 75 см²
4у^2-49=0
(2y-7) (2y+7)=0
2y-7=0 или 2у+7=0
2у=7 2у=-7
у=7/2 у=-7/2
у=3,5 у=-3,5
ответ: 3,5; -3,5
25у^2-36=0
(5у-6) (5у+6)=0
5у-6=0 или 5у+6=0
5у=6 5у=-6
у=6/5 у=-6/5
у=1,2 у=-1,2
ответ: 1,2; -1,2