А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
а) (x - 3)⁴ - 5(x - 3)² + 4 = 0
t = (x - 3)²
t² - 5t + 4 = 0
t² - t - 4t + 4 = 0 (Теорема Виета)
t(t - 1) - 4(t - 1) = 0
(t - 1)(t - 4) = 0
t₁ = 1; t₂ = 4
(x - 3)² = 1 (x - 3)² = 4
x - 3 = ±1 x - 3 = ±2
x₁ = 4; x₂ = 2; x₃ = 5; x₄ = 1
б) (x² - 5x - 2)² + 4x² - 20x - 40 = 0
(x² - 5x - 2)² + 4x² - 20x - 8 - 32 = 0
(x² - 5x - 2)² + 4(x² - 5x - 2) - 32 = 0
t = x² - 5x - 2
t² + 4t - 32 = 0
t² - 4t + 8t - 32 = 0
t(t - 4) + 8(t - 4) = 0
(t - 4)(t + 8) = 0
t₁ = 4; t₂ = -8
x² - 5x - 2 = 4 x² - 5x - 2 = -8
x² - 5x - 2 - 4 = 0 x² - 5x - 2 + 8 = 0
x² - 5x - 6 = 0 x² - 5x + 6 = 0
x² + x - 6x - 6 = 0 x² - 2x - 3x + 6 = 0
x(x + 1) - 6(x + 1) = 0 x(x - 2) - 3(x - 2) = 0
(x + 1)(x - 6) = 0 (x - 2)(x - 3) = 0
x₁ = -1; x₂ = 6; x₃ = 2; x₄ = 3
г) (x - 4)(x + 2)(x + 8)(x + 14) = 1204
Понятия не имею как решать. прости