Область определения (или значения) функции - это ряд тех аргументов, при которых функция имеет смысл. Существует три случая в области определения определения функции:
1) если в правой части функции есть дробь, то знаменатель дроби не должен равняться нулю, в противном случае функция не имеет смысла : у=1/х - x \neq 0(в данном случае область определения функции от - бесконечности до +бесконечности, кроме нуля); y= 5/(x^2-1) - x^2-1 /neq 0 x^2 /neq 1 x /neq 1(область определения данной функции включает значения от - бесконечности до + бесконечности, исключая 1).
2) если функция имеет корень чётной степени, то значение под корнем не должно быть меньше нуля: y=корень из(х) - х>0, значит область определения функции составляет (0;+\infty).
3) если функция имеет и корень и дробь, тогда выражение под корнем не должно быть отрицательным, а выражение в знаменателе не должно равняться нулю: y=корень из(1/х+1), занчит, 1/х+1 > 0 х>-1 и х+1 /neq 0 x /neq -1(область определения этой функции содержит значения от -1 до плюс бесконечности).
У фукции y=x^2-4x+6 нет ни корней, ни дробей, поэтому область определения этой функции включает все значения числовой прямой.;)
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z