С применением степени
(квадрат и куб) и дроби
Квадратный корень
sqrt(x)/(x + 1)Кубический корень
cbrt(x)/(3*x + 2)С применением синуса и косинуса
2*sin(x)*cos(x)Арксинус
x*arcsin(x)Арккосинус
x*arccos(x)Применение логарифма
x*log(x, 10)Натуральный логарифм
ln(x)/xЭкспонента
exp(x)*xТангенс
tg(x)*sin(x)Котангенс
ctg(x)*cos(x)Иррациональне дроби
(sqrt(x) - 1)/sqrt(x^2 - x - 1)Арктангенс
x*arctg(x)Арккотангенс
x*arсctg(x)Гиберболические синус и косинус
2*sh(x)*ch(x)Гиберболические тангенс и котангенс
ctgh(x)/tgh(x)Гиберболические арксинус и арккосинус
x^2*arcsinh(x)*arccosh(x)Гиберболические арктангенс и арккотангенс
x^2*arctgh(x)*arcctgh(x)
Функция тогда принимает отрицательные значения, когда y(x) < 0.
-x² + 4x + a < 0
x² - 4x - a > 0
x² - 4x + 4 - 4 - a > 0
(x - 2)² > 4 + a
Графиком функции y = (x - 2)² является парабола, наименьшее её значение равно 0.
Графиком функции y = 4 + a служит прямая, параллельная оси Ox, где a = const.
Т.к. наименьшее значение функции y = (x - 2)² равно нулю, а прямая y = 4 + a пересекает параболу в точке (2; 0), причём a = -4, то при a < -4 неравенство (x - 2)² > 4 + a будет верно всегда
P.s.: т.к. квадрат числа будет неотрицательным, то неравенство верно при 4 + a < 0, т.е. при a < -4.
Наибольшим целым таким a будет являться число 5.
ответ: при a = -5.