М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Bakha111
Bakha111
13.09.2020 13:53 •  Алгебра

Решите тригонометрическое уравнение
sin2x+sin^2x=0

👇
Ответ:
JesperWecksell
JesperWecksell
13.09.2020

\sin(2x)+\sin^2x=0\\\sin^2 x+2\sin x\cos x=0\div \sin^2 x\neq 0\\1+2\cot x=0\\\\\cot x = -\dfrac{1}{2} \\x= \text{arcctg} \bigg(\!-\dfrac{1}{2} \bigg)+ \pi n, n \in Z\\\\x=\pi-\text{arcctg}\bigg(\!-\dfrac{1}{2} \bigg)+\pi n, n \in Z

4,7(43 оценок)
Открыть все ответы
Ответ:
rkarina79
rkarina79
13.09.2020
По условию AB=BD=BC=12 условных единиц длины
∠ABD=∠DBC=∠CBA=90°

Рассмотрим ΔABD. Он равнобедренный т.к. AB=BD.
Найдем сторону основания AD по теореме Пифагора
AD²=AB²+BD² ⇒ AD=√(12²+12²=√2*144=12√2 условных единиц длины.
ΔADC - равносторонний, так как ΔABD=ΔDBC=ΔABC
Площадь равностороннего треугольника
S= \frac{ a^{2} \sqrt{3} }{4}= \frac{288* \sqrt{3} }{4}=72 \sqrt{3} условных единиц площади
Проведем из точки B на сторону AD высоту в точку M (она же медиана и биссектриса).  
∠ABM=∠BAM=∠ADB=∠DBM=45° 
MB=AM=0,5AD=6√2 условных единиц длины
В основании в равностороннем треугольники проведем из его вершин высоты (они же медианы, биссектрисы).
Рассмотрим Δ MOD (∠MDO=30° , так как все углы в равностороннем треугольнике равны 60°, а биссектриса проведенная из вершины делит угол пополам): Tg30= \frac{MO}{MD} ⇒ MO=MD*Tg30°=6 \sqrt{2} * \frac{ \sqrt{3} }{3} =2\sqrt{6} условных единиц длины
BO²=MB²-MO² ⇒ BO=√(72-24)=4√3 условных единиц длины
Объем пирамиды равен
V= \frac{S*h}{3}= \frac{72* \sqrt{3}*4 \sqrt{3}}{3}=288 условных единиц объема

Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 12. найдите объем пи
4,5(6 оценок)
Ответ:
kostf2003
kostf2003
13.09.2020
По условию AB=BD=BC=12 условных единиц длины
∠ABD=∠DBC=∠CBA=90°

Рассмотрим ΔABD. Он равнобедренный т.к. AB=BD.
Найдем сторону основания AD по теореме Пифагора
AD²=AB²+BD² ⇒ AD=√(12²+12²=√2*144=12√2 условных единиц длины.
ΔADC - равносторонний, так как ΔABD=ΔDBC=ΔABC
Площадь равностороннего треугольника
S= \frac{ a^{2} \sqrt{3} }{4}= \frac{288* \sqrt{3} }{4}=72 \sqrt{3} условных единиц площади
Проведем из точки B на сторону AD высоту в точку M (она же медиана и биссектриса).  
∠ABM=∠BAM=∠ADB=∠DBM=45° 
MB=AM=0,5AD=6√2 условных единиц длины
В основании в равностороннем треугольники проведем из его вершин высоты (они же медианы, биссектрисы).
Рассмотрим Δ MOD (∠MDO=30° , так как все углы в равностороннем треугольнике равны 60°, а биссектриса проведенная из вершины делит угол пополам): Tg30= \frac{MO}{MD} ⇒ MO=MD*Tg30°=6 \sqrt{2} * \frac{ \sqrt{3} }{3} =2\sqrt{6} условных единиц длины
BO²=MB²-MO² ⇒ BO=√(72-24)=4√3 условных единиц длины
Объем пирамиды равен
V= \frac{S*h}{3}= \frac{72* \sqrt{3}*4 \sqrt{3}}{3}=288 условных единиц объема

Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 12. найдите объем пи
4,5(97 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ