Объяснение:
f'x = (ctg(x^2 × y))' = -1/(sin^2 (x^2 × y)) × (x^2×y)' = -1/(sin^2 (x^2 × y)) × 2 × x × y = - (2×x×y) / (sin^2 (x^2 × y))
f'y = ctg(x^2 × y))' = -1/(sin^2 (x^2 × y)) × (x^2×y)' = -1/(sin^2 (x^2 × y)) × x^2 = -(x^2) / (sin^2 (x^2 × y))
f"xx = ( -(2×x×y) / (sin^2 (x^2 × y)) )' = - (2×x×y)' × 1/ (sin^2 (x^2 × y)) - (2×x×y) × (1/(sin^2 (x^2 × y)))' = - (2×y) / (sin^2 (x^2 × y)) - (2×x×y) × ( -2/(sin^3 (x^2 ×y)) ) × cos(x^2 × y) × 2 × x × y = - (2×y) / (sin^2 (x^2 × y)) + (8×x^2×y^2) × (1/(sin^3 (x^2 ×y)) ) × cos(x^2 × y) = - (2×y) / (sin^2 (x^2 × y)) + ( 8×x^2×y^2 × cos(x^2 × y) ) / (sin^3 (x^2 ×y))
f"yy = (-(x^2) / (sin^2 (x^2 × y)))' = -(x^2) × (-2) × (sin^(-3) (x^2 × y)) × cos (x^2 × y) × x^2 = ( 2 × x^4 × cos (x^2 × y) ) / (sin^3 (x^2 × y))
f"xy = f"yx = - (2×x) / (sin^2 (x^2 × y)) - (2×x×y) / (sin^3 (x^2 × y)) × (-2 × cos(x^2×y) × x^2) = - (2×x) / (sin^2 (x^2 × y)) + 4 (x^3 × y × cos(x^2×y)) / (sin^3 (x^2 × y))
2) =5 + 4х = 1/6
4х = -5 +1/6
х = -4 5/6 (ОДЗ: 5+4х >0⇒ 4x > -5⇒ x > -5/4)
3)х² -5х +8 = 4
х² -5х +4 = 0
х1 =4; х2 = 1 (ОДЗ: х² -5х +8) >0, х - любое)
4)6-4х =0
4х = 6
х = 1,5 (ОДЗ: 6 - 4х > 0⇒ -4x >-6 ⇒ x < 1, 5
ответ: нет решений.
5)4х -7 < x +2
3x < 9
x < 3 (ОДЗ: 4х -7 >0 ⇒ x > 7/4⇒ x > 1,75
x +2 >0 ⇒ x > -2 ⇒ x > -2)
ответ(1,75; 3 )
6)3x -7 ≤x +1
2x ≤ 8
x≤ 4 (ОДЗ: 3x -7 > 0 ⇒ x > 7/3⇒ x > 2 1/3
x +1 > 0 ⇒х >-1)
ответ: х∈ (2 1/3; 4]
7)4 - 6x ≤ 10/4
-6х ≤ -7 + 2,5
-6х ≤ -4,5
х≥7,5 (ОДЗ: 4 - 5х > 0⇒ -5x > -4⇒ x < 4/5)
ответ: х∈(4/5; 7,5]