В решении.
Объяснение:
График функции, заданной уравнением у=(a + 1)x + а - 1 пересекает ось абсцисс в точке с координатами (-2; 0);
а) Найдите значение а;
Подставить известные значения х и у (координаты точки) в уравнение, вычислить а:
у = (а + 1)х + а - 1
0 = (а + 1)*(-2) + а - 1
0 = -2а - 2 + а - 1
0 = -а - 3
а = -3;
б) запишите функцию в виде у=kx+b;
Коэффициент k = (а + 1) = -3 + 1 = -2;
k = -2;
b = (а - 1) = -3 - 1
b = -4;
Уравнение функции:
у = -2х - 4.
c) Не построив графика функции, определите, через какую четверть график не проходит.
Так как k < 0 и b < 0, график не проходит через 1 четверть.
В первом уравнении мы раскрыли модуль: при x > 0 уравнение имеет вид y + a = 1, при x ≤ 0 оно не определено.
График первого уравнения - прямая, параллельная оси Ox, которая определена при x > 0. График второго уравнения - парабола, её вершина имеет координаты (-a; -3). При движении прямой вниз парабола сдвигается влево, а при движении прямой вверх - вправо.
Система имеет одно решение, если прямая касается параболы или парабола пересекает её один раз.
1 случай. Касание. Прямая, которая касается параболы, имеет уравнение y = -3 ⇒ 1 - a = -3 ⇔ a = 4. Но тогда вершина параболы будет иметь координату (-4; -3), а при x < 0 первое уравнение не определено. a = 4 не подходит.
2 случай. Пересечение. Если бы прямая y = 1 - a была определена в точке x = 0, то парабола имела бы одно пересечение с прямой в некой точке (0; y₁), двигалась вправо, пока её левая ветвь вновь не пересекла прямую в точке (0; y₂). Но x = 0 не входит в область определения, поэтому это лишь меняет границы полуинтервала местами (т. е. если левая граница была исключена, а правая включена, то сейчас наоборот: левая включена, правая исключена). Подставим координаты (0; y) и составим уравнение:
Правая граница исключается, иначе не будет пересечений, левая включается, т. к. при таком a всё ещё будет одно пересечение.
ответ:
по русски